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(1.) Introductory.

There are few branches of the Theory of Evolution which appear to the mathematical

statistician so much in need of exact treatment as those of Kegression, Heredity, and
Panmixia, Round the notion of panmixia much obscurity has accumulated, owing to

the want of precise definition and quantitative measurement. The problems of

regression and heredity have been dealt with by Mr. Francis Galton in his epoch-

making work on ' Natural Inheritance/ but, although he has shown exact methods of

dealing, both experimentally and mathematically, with the problems of inheritance, it

does not appear that mathematicians have hitherto developed his treatment, or that
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biologists and medical men have yet fully appreciated that he has really shown how

many of the problems which perplex fchem may receive at any rate a partial answer.

A considerable portion of the present memoir will be devoted to the expansion and

fuller development of Mr. Galton's ideas, particularly their application to the problem

of bi-parental inheritance. At the same time I shall endeavour to point out how the

results apply to some current biological and medical problems. In the first place, we

must definitely free our minds, in the present state ofour knowledge of the mechanism

of inheritance and reproduction, ofany hope of reaching a mathematical, relation express-

ing the degree of correlation between individual parent and individual offspring^ The

causes in any individual case of inheritance are far too complex to admit of exact

treatment ; and up to the present the classification of the circumstances under which

greater or less degrees of correlation between special groups of parents and offspring

may be expected has made but little progress. This is largely owing to a certain

prevalence of almost metaphysical speculation as to the causes of heredity, which

has usurped the place of that careful collection and elaborate experiment by which

alone sufficient data might have been accumulated, with a view to ultimately narrow-

ing and specialising the circumstances under which correlation was measured. We
must proceed from inheritance in the mass to inheritance in narrower and narrwoer

classes, rather than attempt to build up general rules on the observation of individual

instances. Shortly, we must proceed by the method of statistics, rather than by the

consideration of typical cases. It may seem discouraging to the medical practitioner,

with the problem before him of inheritance in a particular family, to be told that

nothing but averages, means, and probabilities with regard to large classes can as

yet be scientifically dealt with ; but the very nature of the distribution of variation,

whether healthy or morbid, seems to indicate that we are dealing with that sphere of

indefinitely numerous small causes, which in so many other instances has shown itself

only amenable to the calculus of chance, and not to any analysis of the individual

instance. On the other hand, the mathematical theory wT
ill be of assistance to the

medical man by answering, inter alia, in its discussion of regression the problem as

to the average effect upon the offspring of given degrees of morbid variation in the

parents, It may enable the physician, in many cases, to state a belief based on a

high degree of probability, if it offers no ground for dogma in individual cases.

One of the most noteworthy results of Mr. Francis Galton's researches is his

discovery of the mode in which a population actually reproduces itself by regression

and fraternal variation. It is with some expansion and fuller mathematical treatment

of these ideas that this memoir commences.

* The physical and arithmetical statements of Weismann's " Theory of Germ Plasm " offer, so far as I

have been able to interpret them, no sound basis for a quantitative theory of heredity in the mathemati-

cian's sense,
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(2.) Definitions.

It is necessary to give definitions to several current biological conceptions, in

order to introduce them into our mathematical analysis.

(a.) Variation.—-If a curve be constructed, of which the ordinate y is such that

y Sx measures the frequency with which an organ lying in size between x and x + &#,

occurs in a considerable population (500 to 1000 or more), the constants which, for

any particular organ for any particular animal determine the form of this curve, are

termed the constants of variation^ or more briefly, the variation of the given organ.

The assumption is made that the frequency is continuous, or that we really reach a

curve. In the great majority of cases, where real statistical methods have been used,

continuous curves (or, practically, polygons) have been found, and we shall assume this

continuity to hold in all cases to which our formulae are applied.

The size of the organ (x) which corresponds to the ordinate (y) through the

centroid of the frequency curve, is termed the mean ; the size of the organ, which

corresponds to the ordinate bisecting the area of the frequency curve, is termed the

median ; the size of the organ corresponding to maximum frequency is termed the mode.

We assume, what may be considered a.s fairly established, that variation curves in

zoometry, and more especially anthropometry, approximate closely to probability

curves. When the variation curve has more than one mode, it may, as a rule, be resolved

into simple probability curves, each with a single mode, and it may be even hetero-

geneous and require resolution, when only one mode is apparent.# These probability

curves may be skew, and in this case the treatment of the problem of heredity involves

a discussion of skew-correlation,t but in a very great range of cases the frequency

is sufficiently closely given by the normal probability curve. Here the variation is

defined by a single constant^ the standard deviation a, and the equation to the curve

is given by
N

y - s/t™

and we shall confine our attention to such variation in the present memoir. The

following assumption, therefore, lies at the basis of our present treatment of heredity.

The variation of any organ in a sufficiently large population—which may be selected

in any manner other than by this organ itself from a still larger population

—

is closely defined by a normal probability curve.

(b.) Correlation.—Two organs in the same individual, or in a connected pair of

* On resolution and skew variation, see * Contributions to the Mathematical Theory of Evolution,'

Memoirs I. and II., ' Phil. Trans.,' vols. 185 and 186.

t Dealt with in a memoir not yet published.

\ Inheritance can be treated by single-constant variation in the case of most organs in human adults,

but it could not be dealt with in like manner in the of case pedigree buttercups, see De Vries :
' Berichte

der Deutschen Botanischen Gesellschaft/ 1894 and 1895.
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individuals, are said to be correlated, when a series of the first organ of a definite size

being selected, the mean of the sizes of the corresponding second organs is found to be

a function of the size of the selected first organ. If the mean is independent of this

size, the organs are said to be non-correlated. Correlation is defined mathematically

by any constant, or series of constants, which determine the above function.

The word " organ " in the above definitions of variation and correlation must be

understood to cover any measurable characteristic of an organism, and the word
" size," its quantitative value.

(c.) Natural Selection.—This is of two kinds : Secular Natural Selection is

measured by the changes due solely to mortality, in the mean and standard deviation

of the vaiiation-curve as we pass from one adult generation to the next. In

statistical observations on man it is by no means easy—as we shall indicate later—to

differentiate it from the effects of sexual selection, and of altered sanitary conditions.

Periodic Natural Selection may leave no trace of itself in the adult variation-curves

of successive generations ; it is measured by the changes due solely to mortality in

the mean and standard deviation of the variation curves at successive stages of the

same generation

—

due allowance being made for the changes of the variation-constants

due to groivth. In other words, if we watched a generation from birth to the adult

stage, carefully preserving it from any form of selective mortality, such as arises from

the struggle for existence, we should still find changes in the variation-constants due

to the law of growth. If now the same generation be subjected to the struggle for

existence, i.e., placed in its natural surroundings, the variation-constants will differ

from their values at the corresponding stages of the unselected growth. This

difference is due to the selective mortality, i.e., to natural selection. But this

selective mortality may go on and still leave the variation-constants of the adult

stage of each, generation the same. In this case we speak of it as periodic natural

selection. It repeats itself in each generation, but produces no secular change. It

maintains an adult standard, but is not a factor of progressive evolution.

No estimate of periodic natural selection can be formed until the law of growth

has been accurately ascertained by a series of observations on individuals. The

influence of secular natural selection will be allowed for in our investigations by

supposing the means and standard deviations of successive adult variation-curves to

be not necessarily the same,#

(d.) Sexual Selection.—Sexual Selectiont is of two kinds, due respectively to what

* Variation-curves for non-adult populations appear to be frequently skew. I propose in another

paper to discuss the general law of selection on the basis of skew curves and with any arbitrary law of

growth.

f I think Darwin's view would be of the following kind. Let A be the most attractive female, a the

most efficient male, Z the least attractive female and z the least efficient male. Then supposing only

these four, a and 2 would both desire A with the result that (1) a would drive away z or (2) kill him.

In the first case z would be free to mate with Z, but if he did so they would tend to produce a miserable

MJDCCCXCVI.—A. 2 L
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may be spoken of as individual and tribal taste. Tribal taste manifests itself in the

preference of one sex as a whole for mating with members of the other sex having

special characteristics, or to the rejection as mates by one sex of members of the

other having special characteristics. The preference and rejection being in neither

case absolute, but relative. This type of sexual selection, which may be spoken of as

preferential mating, is measured by the differences in mean and standard deviation

between the variation-curves for the whole adult population of one sex, and for the

mated portion of it. For example, the mean height and mean variation in height of

women generally are not identical, or are not necessarily identical with the mean

height and mean variation in height of wives. Preferential mating may have

reference to any organ or measurable characteristic of either sex.

Individual taste on the other hand does not denote the exclusion from mating of

any section of the population of either sex. It is due to the preference of individuals

with an organ or characteristic of given size for mates with the same or another

organ or characteristic of a size, the average of which differs from the whole popula-

tion average. This type of sexual selection which may be spoken of as assortative

mating is measured mathematically by the coefficient of correlation between the two

organs or characteristics in mated pairs.

It will be obvious that preferential mating and assortative mating are fundamental

ideas to be quantitatively allowed for in any theory of heredity. Their action may

often be in entirely opposite directions/*

(e.) .Reproductive Selection.—-One pair may produce more offspring than another,

and in this manner give through heredity greater weight to their own characteristics.

For example, the mean height of mothers is not identical, or is not necessarily

identical with the mean height of wives, nor is the standard-deviation of fathers

identical or necessarily identical with the standard-deviation of husbands. Further,

the means and standard-deviations of mothers or fathers of sons may be different

from those of mothers or fathers of daughters. The quantitative measure of repro-

ductive selection is the correlation between the size of any selected organ in. either

male and female and their reproductivity, the reproductivity being measured by the

number of their offspring in either sex or both sexes,

offspring fated to die out. Of course a might in certain cases after (1) mate with both A and Z. rTone

of these possibilities corresponds exactly to what is described in this section as assortative mating, which

in no way necessitates the exclusion from mating of 0, a and are not indeed competitors, but seeking

different qualities in their mates. Thus, in man for example, the intellectual and non-intellectual might,

and possibly do, sort themselves out in pairs, i.e., there is a correlation between intellectual capacity of

husband and wife.

* For example, preferential mating might lead in a highly social community to the rejection of

consumptive mates, while assortative mating might, through localisation or community of habit, lead to

considerable consumptive correlation. Thus sexual selection as a whole may influence in diverse Avays

the inheritance of the consumptive taint.
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The importance of determining whether there is any correlation between repro-

ductivity and a given organ of either parent appears to be great. For, if there be, it

is not easy to understand howT
, even in the absence of both natural and sexual

selection, a population can remain in a stable state. For example, suppose the mean

father or the mean mother or both to be taller than the mean man or the mean

woman or both, then this reproductive selection would appear to involve a gradual

increase of height in the population in the same manner as selective breeding of

animals by man might do. It is probable, therefore, that if reproductive selection be

demonstrated by a finite value of the correlation constants, the instability of the

population which results is partially or completely screened by natural selection. #

(f.) Heredity.—Given any organ in a parent and. the same or any other organ in

its offspring, the mathematical measure of heredity is the correlation of these organs

for pairs of parent and offspring. If the organs be the same for parent and offspring,

the heredity may be spoken of as direct, if they be different as cross. The word organ

here must be taken to include any characteristic which can be quantitatively measured.

If the organs are not those of parent and offspring, but of any two individuals

with a given degree of blood relationship, the correlation of the two organs will

still be the proper measure of the strength of heredity for the given degree of

relationship. C/I § 6.

(g.) Regression.—-Regression is a term which has been hitherto used to mark the

amount of abnormality which falls on the average to the lot of offspring of parents of

a given degree of abnormality. The mathematical measure of this special regression

is the ratio of the mean deviation of offspring of selected parents from the mean of

all offspring to the deviation of the selected parents from the mean of all parents.

This may be further elucidated as follows :—Let parents, having an organ or charac-

teristic of given deviation from the average or normal, be termed a " parentage/
7

let

the offspring of a parentage be termed a " fraternity." Then the coefficient of

regression may be defined as the ratio of the mean deviation of the fraternity from

the mean offspring to the deviation of the parentage from the mean parent. Both

parentage and fraternity may be either male or female. It will be noted that we

have so framed our definition of regression, that it marks the deviation of the

fraternity from the filial and not the parental mean. We are thus able to allow for

secular natural selection and reproductive selection. We shall see in the sequel that

the coefficient of regression is a function of the variations in parents and offspring,

and further of the correlations which define parental heredity and assortative mating.

Further, as in heredity, the deviation or abnormality in parentage and fraternity may

be measured with respect to the same or different organs ; we have thus direct and

cross regression.

From this special definition of regression in relation to parents and offspring, we

* I hope shortly to publish a paper on " Keproductive Selection in Man," and show how completely

it appears to screen Natural Selection in the case of civilised man.

2 o



260 PROF. K. PEARSON ON THE MATHEMATICAL THEORY OE EVOLUTION.

may pass to a general conception of regression. Let A andB be two correlated organs

(variables or measurable characteristics) in the same or different individuals, and let

the sub-group of organs B, corresponding to a sab-group of A. with a definite value a,

be extracted. Let the first of these sub-groups be termed an array, and the second a

type. Then we define the coefficient of regression of the array on the type to be

the ratio of the mean-deviation of the array from the mean B-oman to the deviation

of the type a from the mean A-organ. The following are illustrations of types and

arrays ;

—

Organ of given magnitude in-

Parent
Offspring

Wife. .......
Husband .....

Given value of—
Height . . .

Cephalic index .

Barometric height .

Local wages ....

Distribution of the correlated organs in-

Fraternity.

Parentage.

Male matage.
Female matage.

Distribution of correlated

—

Spans.

Alveolar indices.

Heights at second station.

Local pauper percentages.

Etc.

It will be seen in the sequel that for the same pair of correlated organs or charac-

teristics, the coefficient of regression is, if the law of frequency be the normal law,

the same for the arrays corresponding to all types. But the coefficient is not the

same wThen the type and array organs are interchanged, e.g., the regression of

husbands (male matage) on wives is not the same as the regression of wives (female

matage) on husbands.

(h.) Panmixia.—Suppose that starting from a population of given mean and varia-

tion for any particular organ, secular natural selection of definite amount takes place

for p generations and produces a population of another definite mean and variation

for this same organ. Now suppose natural selection, whether periodic or secular, to be

suspended for q generations, and sexual selection to be non-extant or negligible, then

those members of the general population which were formerly weeded out, will now

mix with all the other members of the population, and the results of interbreeding

are spoken of as panmixia. The mathematical measure of the result on the given

organ of panmixia acting for q generations is the change in mean and variation of

the population with regard to that organ during these q generations. Should the

mean and variation of the population tend with increase of q to approach the mean

and variation of the population p + q generations previously, panmixia may be said to

reverse natural selection.
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We have now defined the chief factors which will be dealt with in the present

memoir, and shown how they are to be quantitatively measured. We shall now pro-

ceed to their mathematical analysis on the fundamental assumption that the variations

with which we are about to deal obey the normal law of frequency.

(3.) Correlation with special reference to the Problem of Heredity.

(a.) Historical.—The fundamental theorems of correlation were for the first time

and almost exhaustively discussed by Bravais
(

6 Analyse mathematique sur les pro-

bability des erreurs de situation d
?

un point/ Memoires par divers Savans, T. IX., Paris,

1846, pp. 255-332) nearly half a century ago. He deals completely with the correlation

of two and three variables. Forty years later Mr. J. D. Hamilton Dickson ('Proc.

Roy. Soc./ 1886, p. 63) dealt with a special problem proposed to him by Mr. Galton, and

reached on a somewhat narrow basis# some of Bravais' results for correlation of two

variables. Mr. Galton at the same time introduced an improved notation which may be

summed up in the 6 Galton function ' or coefficient of correlation. This indeed appears

in Bravais' work, but a single symbol is not used for it. It will be found of great value

in the present discussion. In 1892 Professor Edgewqiith, also unconscious of Bbavais'

memoir, dealt in a paper on 'Correlated Averages' with correlation for three variables

('Phil. Mag/ vol. 34, 1892, pp. 194-204.) He obtained results identical with Bravats',

although expressed in terms of ' Galton's functions/ He indicates also how the

method may be extended to higher degrees of correlation. He starts by assuming a

general form for the frequency of any complex of n organs each of given size. This

form has been deduced on more or less legitimate assumptions by various writers.

Several other authors, notably Schols, de Forest and Czuber, have dealt with the

same topic, although little of first-class importance has been added to the researches

of Bravais. To Mr. Galton alone is due the idea of applying these results—

usually spoken of as " the laws of error in the position of a point in space "—to the

problem of correlation in the theory of evolution.

The investigation of correlation which will now be given does not profess, except

at certain stated points, to reach novel results* It endeavours, however, to reach

the necessary fundamental formulae with a clear statement of what assumptions are

really made, and with special reference to what seems legitimate in the case of

heredity.

(6.) Theory of Correlation.—Let 7)v t? 2 , tj
3

. . . *qn be the deviations from their

respective means of a complex of organs or measurable characteristics. These organs

may be in the same or in different individuals, or partly belong to one and partly to

another individual. The complex may be constituted by a natural or artificial tie

* The coefficient of correlation was assumed to be the same for the arrays of all types, a result which

really flows from the normal law of frequency.
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of any kind, but the tie is to remain the same for every complex, whether it be the

result of mating or parentage, or flow from any physiological or social relation, &c.

We shall now assume that the sizes of this complex of organs are determined by a

great variety of independent contributory causes, for example, magnitudes of other

organs not in the complex, variations in environment, climate, nourishment, physical

training, various ancestral influences, and innumerable other causes, which cannot be

individually observed or their effects measured. Let these causes be m in number,

m being generally much greater than n, and let their deviations from their mean

intensities be e
1? e

2 , €
3 , . . . em then rj

l}
r)

2 , ??3 , . . . yj n will be functions of ev e2 , e
3 , • . . em .

Further, certain of the e's will appear only in certain of the t/s, and the €
?

s will not

be fully determined for a given rj complex.

We shall in the next place assume that the variations in intensity of the contri-

butory causes are small as compared with their absolute intensity, and that these

variations follow the normal law of distribution.^ The mean complex being reached

with the mean intensities of contributory causes, we have by the principle of the

superposition of small quantities :

77 ! = au€
1 + ^12^ + a

13
€
3 + • • • + otmem ~)

1

% = an€
i + *nH + a

23e3 + • • • + <*-2mem , L (\\f
* n o $ * 1 X / •

r]
tl
— ajae } + aw2e3 + a„2^ + • • . + «»«»€.Ml) J

Here any of the system, of as may be zero.

Further, the chance that we have a conjunction of contributory causes lying

between e
l
and c

x + §e1?
e
2
and e3 + §% • • • em an^ €/» + $*m w^ be given by

P = Ce"^ +^ +^ +,, ' +») X hefie^e* . . . Bm ..... (ii)

where the standard deviations of the variation distributions for <e
}

, €2, c
3 , . , . e

}l
are

respectively k
19 k2 , k3? . . . Km and C is a constant,

Now by aid of the equations (i.) let n of the variables e, say, the first n, be replaced

by the variables ?/, then the probability that we have a complex with organs lying

between 77 x
and r)

l + St)v r)
2
and % + 8t?

2 . . . rjn and tjh + §??»> together with a series

of contributory causes lying between cft+1 and c„ + i + Sew+ i, cw+2 and e„+2 + 8cw+2 . * . c#,

and ew + $em will be

P' =z Q!e~w St?
3
Stj

2 . . . 8^»oen+1 oew+2 . . . o£m

* This may be taken at any rate as a first approximation. It is at this point that the theory of skew-

correlation diverges from our present treatment,
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where C Is a constant, a function of C and the a
J

s
9
and <p consists of the following

parts :—

(i.) A quadratic function of the rj
5

s from r)
x
to r)H)

(ii.) A quadratic function of the e's from eH+1 to e/K ,

(iii.) A series of functions of the type :

€n+l vh
t n+lVl "+" ^n+l 7]^ +»••+* \f»+lW'

e«+2 (^1, tt+ 2^1 4" ^2
f
»+2',?2 T" • *

«
' "T ^», w+2^/9

-M (&J, m^l + ^ «^2 + • • • + &*, *#»)j

where some of the 6
?

s may be zero.

Now if F be integrated for the values from - oo to + oo of all the contributory

causes e„ +l , eu+2 . . . em we shall have the whole chance of a complex with organs falling

between t?
x
and rj

l + 8rfl9
rj2 and t],2 + 8% • . . ^ and i;„ + Sr^. But every time we

integrate with regard to an e, en+ u say. we alter the constants of each contributory part

of <£
3
, but do not alter the triple constitution of <£

s
, except to cause one € to disappear

from its (ii.) and (iii.) constituents. At the same time we alter C without Intro-

ducing into It any terms in yj. Thus, finally, after m — n Integrations,
<f>%

is reduced

to its first constituent, or we conclude that the chance of a complex of organs between

77! and r)
x + St^, % and t\% + 8^ . . . t]u and rjn + 8r] u occurring is given by

P = Ce~*x% Sr)
1
8r)o * . . 8rju (HI*)

where x^ is a quadratic function of the Vs * This Is the law of frequency for the

complex.

Now our deduction of (iii.) seems to have considerable justification In case of

heredity. We allow for an indefinite number of quite inappreciable and unaseer-

tainable independent contributory causes. We suppose that some of these causes

are common to parent and offspring ; how many and in what degree we make no

pretence at saying. We assume, however, that the action of these causes does not

differ very widely in intensity throughout the special range of organisms from which

our complexes are drawn, and further, that the variation in intensity of any con-

tributory cause follows that law of frequency, which we know to be at any rate

approximately true, for distributions of physical and organic variation similar in

character to those In which we may with a high degree of probability suppose the

phenomena of heredity to ultimately have their origin.

Having thus deduced, with special reference to our particular topic, Bkavais* law

of frequency, I propose to consider its characteristics in two special cases, as it is

needful to deduce for our present purposes one or two, I believe, novel results.
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(4.) Special Case of Two Correlated Organs,

(a.) Theory.—Let x and y be the deviations of a pair of organs (or measurable

characteristics) from their respective means, Let <j
1
and a\

2
be the standard devia-

tions of x and y, treated as independent variations. Let N be the total number of

pairs and z X Set? By the frequency of a pair falling between -x and x ~j~ Sx, y and

y + §y> then, by Bravais' form,

where $ 1? </3 , and A are constants.

Integrate % for all values of y from — a to + a
5
&I1(i we must have the normal

curve of x-variation, hence

z 9l (1 -Wlgtfz).4) O^1

Similarly integrating 2 for all values of #, we have

Now integrate 2 for all values of x and ^/ to obtain the total frequency, and we
have

N = Grr/V'g xg% — W.

If we now write r for — hjs/g^g^ we can throw z into the form

1ST 1 _, r x* _ 2A7/r y8 .

(6.) On ^6 &es£ Value of the Correlation Coefficient.— This is the well-known

Galtonian form of the frequency for two correlated variables, and r is the Galtoist

function or coefficient of correlation. The question now arises as to what is

practically the best method of determining r. I do not feel satisfied that the

method used by Mr. Galton and Professor Weldon will give the best results. The
problem is similar to that of determining cr for a variation-curve, it may be found from

the mean error or the median, but, as we know, the error of mean square gives the

theoretically best results.

Let the n pairs of organs be x
l9 yly

x^ y29 x& ySi &c. .. . . then the chance of the

observed series for a given value of r varies as
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(1 - 7*f
; 6 H^ll-^) o-io-aa-^) <ra*(l-»*)J

-r
2
3 _ 2-*W' m Vi

/\ • • • • »

j

or, S denoting summation, since cr^ = S (x*)jn, cr£ = S (y
2)/n> the chance varies as

1 jl-Ar
7

(1 _^te
e U '* J

>

where X is written for S (^VC^o^o^), and S (xy) corresponds to the product-moment

of dynamics, as S (x2 ) to the moment of inertia.

Now, assume r to differ by p from the value previously selected, and expand by

Taylor's theorem, after expressing the function, in the following manner :

—

(1 __ r2)i»

We have

i 1 _- X
1 i

(! + y
'2
) fo - ?0 , i \@f + &r) - 1 - 6rs -- r4

a

n
log Ur+p — '~ log Ur + q _ r

2x 3 P + 2 "

(1
"—

r')3
^

+ i
—

"

- ^ZT^i~ /> + &c *

Hence log ur and therefore wr is a maximum when r = X, for the coefficient of />'
3

is then negative. Thus, it appears that the observed result is the most probable,

when r is given the value S (a^V^o^o^). ' This value presents no practical difficulty

in calculation, and therefore we shall adopt it. It is the value given by Bravais,

but he does not show that it is the best. #

(c.) Probable Error of the Correlation Coefficients.—-Assuming that r has this

value, we may put X = r in the above result, and we find

u (l+?-2) p3 2nr(r*+S) pf

ur+p = ure
"

< x-^ 2 "
c 1-^8" T ~ &c>

Now wr+p is the chance of the observed series on the assumption that the coefficient

* It seems desirable to draw special attention to this best value of the correlation coefficient, as

it has hitherto been frequently calculated by methods of somewhat arbitrary character, involving only

a portion of the observations.

MDCCCXCVL—A. 2 M
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of correlation r is r + p instead of r. Hence the above is the law of distribution of

variation in the coefficient of correlation. If the second term be negligible as com-

pared with the first, we see that p follows the normal law of distribution. Thus we

may say that with sufficient accuracy for most cases the standard deviation of a

coefficient of correlation is

1 — Q
S

\/n (I + r~)

I a—™ nnn

or its probable error = '674506
s/n (1 + r2

)

The ratio of the first term neglected to the term retained

4
r Q'2 ± 3)

3
(r3 + 1)

(1~- r8
)
p7

or to determine the order, giving p its probable value on a first approximation, we
have

1 r (r* + 3)

\/n (r2 + I)1
ratio = I -T^-rr-r

1^ X '674506.

This may be shown to be a maximum for r3 = 1
3
and the ratio then takes the value

1*272
*""/'—'» or the second term in this most unfavourable case will only be about 4 per

cent, of the first when n = 1000. For r = '5, the ratio takes the value 1
#

046/\A& or

for w = 1000 is about 3*3 per cent.

It will be sufficient,, therefore, for most practical purposes to assume that the

probable error of a coefficient of correlation

1 — T&= 8674506
\/n (1 + -r

2
)

(d.) Constancy of Correlation Coefficients for Local Races.—This result is not only

of importance in dealing with the problem of heredity, it is crucial for determining

whether constancy of correlation is characteristic of all races of the same species.

Mr. Galton has suggested that the coefficient of correlation might be found to be

constant for any pair of organs in different families of the same race. Professor

Weldon has determined a series of coefficients of correlation for shrimps and crabs,

which he thinks justify him in assuming " as at least an empirical working rule that

Galtoh's function has the same value in all local races. The question whether the

empirical rule is rigidly true will have to be determined by fuller investigation,

based on larger samples,"*

* « Roy. Soc. Proc.,' vol. 54, p. 329, 1893.
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Now whether the sample be large enough or not seems to depend on the just

determined value of the probable error, and in Professor Weldon's case the probable

error is so small, as compared with the value determined for Galton's function,

that I think we may safely draw conclusions from his results.

Taking the case of shrimps, we have for the most reliable determination of r, that

for total length of carapace and length of post-spinous portion # :

—

Plymouth
Southport

n.

1000
800

r.

•81

•85

p.e. of r.

0057
•0050

Thus the difference between the r's is not very large, but still between five

and six times the probable error ('0075) of their difference.

Takiag two cases from Professor Weldon's results for crabs,t with rV of con-

rttuiy uineruiib uiuur, wt, ua vc »

n. r. p.e. of r.

Breadth, frontal, and . . .

R. antero-lateral margin . . :{

Naples
Plymouth

1000
1000

•29

•24

•0187

•0196

R. antero-lateral margin, and
i

Naples
Plymouth

1000
1000

•60

•70

•0117

•0089

With these probable errors the identity of the first pair of r's is unlikely ; the

identity of the second excessively improbable.

The conclusions therefore to be drawn from our results are these :—The samples

taken were sufficiently large to determine r with close practical accuracy. Hence,

therefore, unless there were large errors of measurement, or in the determination of r,

the evidence of these observations is against the constancy of Galton's function for

local races of the same species. If the differences in the values of r be attributable

not to deviation in the sample from the mean, but to experimental error or to

methods of calculation, then it would appear that the methods adopted or the

measurements are not sufficiently close to supply an answer to the problem proposed,

it being an essential condition of the requisite observations that the experimental, or the

arithmetic error shall be less than the probable error of the sample. It seems to me

extremely improbable that the divergence should be due to errors of measurement,

and Professor Weldon's papers, I venture to think, illustrate not the constancy of

* * Roy. Soc. Proc.,' vol. 51, p. 2, 1892.

f ' Roy. Soc. Proc.,' vol. 54, p. 327, 1893.

2 m 2
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correlation in species, but the equally interesting 'point of the extent and manner of

its variation in local races.

(5.) Regression, Uniparental Inheritance, and Assortative Mating,

(a.) General Formidw.—On the basis of the above discussion we can obtain the

formulae requisite for calculating scientific measures of uniparental inheritance

and assortative mating.

Let male or female parents solely be kept in view, and let male or female parents

be considered which have an organ or measurable characteristic differing h from that

of the general population of male or female parents. Then the frequency of a

variation x in the same or any other organ of the offspring is given by

N 1 ,( &
__ _ 2a7tr _ + __ ft* \

Z— — e~U 7/(T_73) oi<rs (i-^"j ~«/<fi-~r») i •

The offspring, therefore, have variation following a normal distribution about the

mean

x = r - h,

and with standard deviation cr
l
*/(l — r3

).

Hence, by our definition, the coefficient of regression = x /h = raj^, and the

variability of the offspring of the selected parents is reduced from that of the

general population of offspring in the ratio of ^/(X — r2
) to 1. We thus have a

measure of the manner in which selection of parents reduces the variability in

offspring, i.e., tends to make the latter closer to a definite type. This result is achieved

even with promiscuity in the case of one parent, if there be selection in the case of

the other. The greater closeness of approach to type when both parents are selected

will be dealt with under biparental inheritance.

We note that the coefficient of regression and the restriction of variability are the

same whatever type of parent be adopted, or the closeness with which selection leads

to a given type of offspring is independent of the parent adopted and the type of

offspring which results from this parent. 4'"

# This is, of course, true of the regression arid variability of the array corresponding to any type

whatever, when frequency follows the normal law. Mr. Gr. U. Yule points out to me that if the

coefficient of regression be constant for the arrays of all types, then it follows that whatever "be the law of

frequency , the coefficient of regression must = ro-j/<r
3 , where r = S (wy)

I (M<*i<r%) • This much generalises

the formula. At the same time, in the case of skew- correlation, the coefficient of regression usually

varies with the type, and the fundamental problem is to determine what function it is of the type. Let

bridegrooms of age differing by p years from the mean age of all bridegrooms have an array of brides

with a mean age differing q years from the mean age of all brides ; then pjq is not constant for all

values of p.
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These results have been reached by Mr. Galton in his work on ' Natural

Inheritance.' He, however, supposes the population to be stable, and makes the

mean and variation of successive generations the same, i.e.
9
xQ is measured from the

mean of the general population of parents, and cr
{
taken equal to cr2 . It seems better

to keep our formulae perfectly general, and allow for possible natural selection of the

secular kind as well as for possible reproductive selection.

(6.) Special case of Stature in Man.—In order to get some idea of the nature of

direct and cross inheritance, of assortative mating, &c, in man, I have, in conjunction

with Professor "WVF. R. Weldon, issued a circular and card appealing for help in

collecting family measurements. We hope eventually to procure 1000-2000 families

with data of height, span, and arm-length, but it may be many months, or even

years, before sufficient material has been accumulated to allow of fairly definite state-

ments being made. Meanwhile, Mr. Galton, with his accustomed generosity, has

placed at my disposal the family data on which his work on 'Natural Inheritance'

was based. These data contain statistics with regard to one organ, height, for about

200 families. The number is not sufficiently great to. make the probable error of

quite small enough dimensions in several cases, and so allow of definite conclusions.

The data do not offer, as those we are collecting, material for the treatment of cross

as well as direct inheritance. Nevertheless, the drift of Mr. Galton's statistics is in

many cases obvious enough, and even in other cases, where the weight of the numerical

results is not great, the conversion of our formulae into numbers will still assist the

reader to understand their significance, and serve to some extent for comparison when

wider series of statistics are forthcoming.# Hence, in the numerical results of this

paper, I wish more to draw attention to method than emphasise general laws. Mr.

Galton's families appear to have been drawn from the upper middle classes, and

therefore any conclusions formed must not be hastily extended to the whole

community.

* Only those who have attempted to get the measurements of, say 20 families, will appreciate the

difficulty of the task of completing even 200 for one organ. Parents and children must be alive and

fall within suitable limits of age; and what is more, their interest mast be aroused.
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The following tables give the chief results :•

Table I.—Variation,

Class.

Males . . . .

Husbands . . .

ouns . » . « ,

Fathers in general
Fathers of sons .

Fathers of daughter
Females
Wives ....
Daughters ...
Mothers in general

Mothers of sons .

Mothers of daughter s

Number. Mean Height
in inches.

683
200
483
935
483
452
652
200
452
935
483
452

69-215

69-136

69-247

69-175

69-106

69-248

64-043

63-839

64-118

64-099

64*054

64T47

Probable
Error

of M.H.

fe.U. in

inches.

•066

•126

*081

•055

•071

•086

•061

•110

•075

•051

•072

•072

2-592

2*628

2-617

2-501

2-325

2-731

2-325

2-303

2-347

2-308

2-334

2-274

Table IT.—Correlation*

Class. Coefficient r. Probable Error of r.

Husbands and wives . . . .

Fathers and sons .....
Fathers and daughters . . .

Mothers and daughters . . .

•0931

•3959

•3603

•3018

•2841

•0473

•0241

•0260

•0267

•0281

Table III.—-"Regression.

Class.

Assortative Mating :
—

Husbands on wives
Wives on husbands

Coefficient of Regression.

Inheritance

:

—
Fathers on sons
Sons on fathers

'1062

•0816

•3517

•4456

Fathers on daughters
Daughters on fathers

t*i**»**t**t tiHMMMf a * IM9M«MHHM»H •«»(•»•••**• »•*«••*( «#••«««(>*** i

•4192

•3096

Mothers on sons
Sons on mothers

Mothers on Daughters .

Daughters on mothers ,

»•« *••«••*<!»•••. '*t

2692
3384

2753

Probable
Error
of S.D.

•047

•089

•057

•039

•050

•061

•043

•078

•053

•036

•051

•051
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Table IV.—Variation in Selected Groups.

Class of Selected.

j

S.D. in

inches.

S.D, in

inches.

2*303
2-6-28

Unselected.

Matage;—
Wives of selected husbands ....
Husbands of selected wives ....

2-293

2*617

2-135

2-548

2-225

2-180

All wives
All husbands

Parentage

:

—
Fathers of selected sons .....
Fathers of selected daughters . . .

Mothers of selected sons

Mothers of selected daughters . . .

2-325

2-731

2-334

2-274

All fathers of sons

All fathers of daughters
All mothers of sons

All mothers of daughters

Fraternity

:

—
Sons of selected fathers .....
Daughters of selected fathers

Sons of selected mothers . . . .

Daughters of selected mothers . . .

2-403

2-189

2-495

2-250

2-617

2-347

2-617

2-347

All sons

All daughters
All sons

All daughters

Table V.—Sexual Ratio.

Class. Ratio of Means, Ratio of S. D.'s. Ratio of V.'s *

Husbands to wives ....
Males to females .....
Sons to daughters
Fathers to mothers . . , .

1-082

1-081

1-080

1-079

1-141

1-115

1-115

1-084

1-055

1-032

1-032

1-005

* V = the " coefficient of variation " or percentage of variation in organ

= 100 S. D. -f- (mean). See below.

N.B.—Mr. Qalton excluded from his calculations the larger families, but it seems to me that large

families form an essential feature of the community. Two brothers are more likely to be two brothers

of a large than of a small family, and, accordingly, large families ought to be given their proportionate

weight. The whole problem, indeed, of reproductive selection turns upon the inclusion of large families,

Explanation of the Tables.—These, tables were calculated in the following manner:

Table I. A father or mother appears once for each child in this Table. The mean

heights of each group were then calculated, as well as their standard deviations

(S.D.) or deviations of mean square. The probable errors of the means and standard

deviations were then found by means of the formulae

p.e. of M.H. = '674506 X S.D./v^,

p.e. of S.D. = -674506 X S.D./v/2w,

where n is the number of cases recorded in the second column of the Table.
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To obtain Table IL, tables of double entry# were formed for the class enumerated

in the first column, e.g., height of husband and height of wife as the variables

x and y, and frequency of each pair of heights as z e From this table S (xy) was

calculated by very laborious but straightforward arithmetic. This, product moment

was reduced to parallel axes (x\ y
f

) through the centroid of the system and r

determined from the formula r = S (xy'j/no-^o (see p. 265). The p.e. of r was then

found from the formula on p. 266.

The coefficients of regression, in Table III., have the value ra-Jor^ given on p. 267,

where, if o^ be the standard deviation of A, and o\2 of B, vo-Jcr^ is the regression of

an A array on a B type, and rcrjcr^ the regression of a B array on an A type.

In Table IV., the array is first stated and then the type ; e.g., in the first line the

type is the husband of given height, the array the distribution of all wives of

husbands of this height. The first S.D. is that of the array obtained from the

formula S.D. = crT \/l — r3
, of p. 267, <r

i
being the second S.D, of Table IV., or the

S.D. of the whole group from which the array has been extracted by selecting a

particular value of the correlated group.

Table V. gives the ratio for corresponding groups of the two sexes of the constants

given in Table I.

Now, a consideration of the probable errors recorded in Tables X. and II. shows us

that, in several cases, definite conclusions may be drawn, and in certain other cases

very probable conclusions. In particular, the probable errors of the correlation

coefficients of inheritance are sufficiently small to show that these coefficients give

the chief features of heredity in the group and for the characteristic we are dealing

with. We may note one or two special features.

(i.) Natural Selection.—-We are dealing with two adult populations, and, therefore,

should only expect to find traces of secular natural selection. The data, however,

are not suited, either by their nature or number, to illustrate this point. There

is a slight increase in height of sons over height of husbands, and a larger increase in

height of daughters over height of mothers. Neither can be definitely asserted to be

significant. Even if they were significant they might be accounted for by (a)

shrinkage due to old age,t and (6) increased physical activity and exercise in the

middle classes of the younger generation, especially daughters. If we turn from

means to S.D.'s we see again an insignificant change in the range of variation of

husbands and sons, the sons being slightly less variable than fathers. This result,

were it necessary to account for it, would be more likely due to our having taken

sons from a less general population than husbands—a point to be borne in mind

* It did not seem necessary to publish these tables, but the corresponding tables will be published

when the fuller data for heredity in man, which I am at present collecting, are complete.

f In my own collection of data, several parents state that they are now shorter than they used to be.

The shrinkage in the case of fathers of sons cannot be great in Mr. G-alton's statistics, to judge by the

means, unless we suppose a sensible regression in sons' stature.
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when statistics of this kind are collected, and more than one son in a family is

included. There is a more significant difference in the variation of wives and

daughters. It is, however, in the opposite sense to what we may suppose would

be produced by natural selection, or by the fact that we have drawn daughters from

a less general population than wives. There is no definite evidence as to natural

selection to be drawn from these results accordingly.

(ii.) Sexual Selection.— (a.) Preferential Mating.—We have no general populations

to compare with those of husbands and wives. If we suppose the population stable,

and treat sons and daughters as characteristic of the general unmarried population,

husbands are not a significant selection from sons. Possibly the difference between

the yariation in daughters and wives might be accounted for by a distaste for very tall

or very short wives in the middle classes. The difference is, however, not very signifi-

cant, but it should be borne in mind in dealing with a larger range of statistics.

(h.) Assortative Mating,—Although the probable error (Table II.) is about half the

coefficient of correlation, it is unlikely that the latter can be really zero, and although

we must not lay very great stress on the actual value of r, still we are justified in

considering that there is a definite amount of assortative mating with regard to height

going on in the middle classes. It may be expressed by saying that wives 1" taller than

the mean will have on an average husbands 'll" taller than the mean, and husbands 1"

taller than the mean, wives on an average *08" taller than the mean (Table III.).

Table IV. shows us that the variation in matages would hardly be discoverable directly

from our present range of statistics.#

(iii.) Reproductive Selection.—Although in the matter of means we cannot assert

significance between the heights of males in general and fathers in particular, it is

quite possible that such will reveal itself in more ample data. On the other hand, we

see at once that fathers are definitely less variable than husbands, and fathers of sons

remarkably less variable than fathers of daughters. Thus, while the height of a

father is less closely related to his chances of having a daughter, any tendency to

normality is of service in the chances of having a son. Eeproductivity in males

seems to be thus essentially correlated to height, and again, height to be potential

in the question of male or female offspring.

An endeavour to directly calculate the correlation of reproductivity and height is

* Of course 200 couples give graphically nothing like a surface of correlation, nor can any section of

it be taken as a fair normal curve. We assume a priori that 1000 couples would give a fair surface. This

is practically what I have found for skull-measurements, 900 give an excellent curve, 50 a doubly, or even

trebly, peaked polygon. ISone the less, sets of 50 skulls give means and S.D.'s in close accord. For

example, in Professor Flinders Petrie's newly discovered race, 50 male crania from T. and Q. graves give

for cephalic index : Mean, 72*96, S.D., 2*82 ; while 53 male crania from General and E. graves give :

Mean, 72*92, S.D., 2*95. The 103 crania together give : Mean, 72'938, SI)., 2*885, with a probable error of

S.D. = -29. The variation curves would not suggest any such close agreement at all. The constants,

however, suffice to show the homogeneous character of the two sets of excavations.

MDCCCXOVI.—A. 2 N
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frustrated by the obvious fact that size of adult families does not follow any approach to

a normal distribution, Thus, I find in 205 adult families the following frequency;—

Title. 1 u 3 4 5

1

6 7 8 9 10 11 12 lO 14 1 V
10

1

(1) Sons and
daughters

»

.

82 udi 23 »> JL JiiO 19 18 1 f >

1(3 8 O •

»

» • •
!

(2) Sons only . 25 43 46 42 80 10 5 3 * « » V 1

(3) Dauffhfcers only
•

2jO
y r.

00 44 34 91 1 o
5 O 1

This Table shows the number of those families in which (1) the number of sons and

daughters, (2) the number of sons only, (3) the number of daughters only correspond,

with the title in the top line.

Now, although, as I propose to show later, the quantity, r = S (asyV^cr^og), is really

a significant characteristic of correlation, just as o^and er
2
are significant for variation

even in the case of skew frequency, still there is little to be gained by working it out

in this particular case, where, the statistics being insufficient to accurately determine

the skew law of frequency, we shall not be able to find what we want—the law of

regression/""

But several points as to paternal reproductlvity may be learnt from these families.

In the first place, of the 25 families with no sons, the father in 5 cases only was below

the mean, in 20 cases above the mean height. The mean height of fathers in general

is 5' 9"'17, but of sonless fathers is 5' 11"'03. Of the 25 daughterless fathers, 14 are

below and 1 1 above the mean height ; the mean height of the daughterless father

being 5' 8"'71. Or, the same point may be emphasised in this way : If short fathers

be taken as those below 5' 6"*5, and tall fathers as those above 5^ ll
;/,

5, short fathers

have 65 sons and tall fathers 67 sons. We should accordingly, with our proportion

of sons and daughters, expect 61 daughters to short fathers and 63 to tall fathers,

but we find short fathers with 73 and tall fathers with 81. This point in reproduc-

tive selection, that mediocre fathers have more tendency to sons and exceptional

fathers to daughters, seems of considerable importance in relation to the prepotency of

paternal inheritance. A similar point, but less emphatically significant, may be noted

in the case of mothers. Mothers of daughters are less variable than mothers of sons.

Without laying too great stress on statistics of so small a range and of one charac-

teristic only, we may still suggest that it might be worth while to investigate whether

the offspring of a mediocre parent and an abnormal parent do not tend to follow the

sex of the mediocre parent.

* Much more complete statistics of size in families have recently been sent to me by Mr. F, Howard

Collins. They give a remarkably smooth shew frequency distribution, thus demonstrating the need of

the theory of shew correlation when we are dealing with reproductive selection. I propose to illustrate

this in a memoir on skew correlation.
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Finally, it is impossible to more than hazard suggestions as to reproductive selec-

tion in relation to mothers' height. It will be noticed that both mothers of sons and

mothers of daughters are taller than wives, and, farther, daughters, while taller than

wives, are not so tall as mothers of daughters. Hence, while the difference in height

of daughters and wives might be due to natural selection or improved physical

training, it might also be accounted for by greater reproductivity as to daughters in

tall women, i.e., mothers of daughters taller than wives, and this tallness being trans-

mitted in a lesser extent to daughters. This would be a case of secular change due

to reproductive selection. The statistics are, however, too few to make the differences

in the mean heights of wives, daughters and mothers, very definitely significant.

(iv.) Inheritance.—Mr. Galtojst has concluded from his data that the coefficient

of regression is *3333 from father to son or from son to father, and by the assumption

of the "midparent" has practically given the mother an equal prepotency with the

father in heredity. The fuller theory developed in this paper does not seem in entire

agreement with these conclusions. In the first place, the theory of uni-parental

inheritance shows us that it is not the constancy of variation in two successive gene-

rations with which we have to deal, but the question whether sons have the same

degree of variability as the " fathers of sons/
5

and this must be definitely answered in

the negative. Table II. shows us that there are undoubtedly significant differences in

the coefficients of correlation, which may be summed up in the words prepotency in

heredity of the father. It must be remembered that this is only for one characteristic,

height, but in this characteristic both sons and daughters, on the average, take very

considerably more after their father than after their mother. Turning to Table V., we

see that the ratio of the mean heights of the two sexes, considered in three different

classes, is practically the same, i.e., 1*08, or 13 to 12, as Mr. Galton has expressed it.

Now, in Table III. we see that the coefficients of regression in paternal inheritance

are not only sensibly greater than those of maternal inheritance, but, as these coeffi-

cients have to be multiplied by the absolute deviations of father or mother from their

means to obtain the absolute deviations of offspring, and as these absolute deviations

will be in the ratio of 13 to 12, there is a considerable further reduction to be made

in comparing the strength of maternal with that of paternal heredity.

Thus it may be said that paternal heredity is to maternal heredity, in the case of sons,

as *4456 to *3384 X y| or to '31 24, and in the case of daughters, '3096 X -fi or "3354 to

'2932. Thus, while daughters inherit less from both their parents on the average than

sons, both—and sons especially-—take more after their father than their mother. The

inferior inheritance of daughters may, to some extent, be counterbalanced by the law

already noticed, that exceptional fathers have more often daughters than sons.

We may illustrate this by two examples—the regression of grandson on grand-

father, and of great-grandson on great-grandfather when the inheritance is respectively

through the male and female lines.

2 N 2
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Grandson on grandfather
Great-grandson on great-grandfather .

ate

1986
1048

Female line.

0885
•0307

In the first case, the strength of inheritance is more than double through the male
;

in the second, more than triple through the male what it is through the female line.

Were this law of inheritance true, not only of stature, but of other physical, and

especially of mental characteristics, some justification might be found for confining

hereditary peerages initially given for merit to the male line. Meanwhile, it cannot

be too strongly emphasized that the present results apply only to one organ, are

based on comparatively few families drawn from a special class of the community, and

thus stand in need of careful criticism in the light of ampler statistical material.

Another point already briefly referred to, which seems of significance, is the in-

equality of regression in the case of ascent and descent in the direct line. It may
seem paradoxical to assert that sons are more like fathers than fathers are like sons, but

the solution is bound up in the statement that fathers of sons are less variable than

sons, or, in another form, that every son is not to the same degree a potential father.

Similarly, the opposite paradox that fathers are, on the average, more like their

daughters than daughters are like their fathers, finds its solution in the relatively

great variability of fathers of daughters.

In Table IV. are tabulated alongside, in each case, the standard deviation for the

corresponding general population, the standard deviations for inheritance from

selected classes. Here again we see a general law for height, which deserves to be

investigated for other organs, and for a variety of animals, namely, we breed " truer

to the type," have less variability in offspring, if we breed from selected males rather

than from selected females. We shall see later the effect of selecting both parents.

(e.) On Further Relations between Correlation, Regression, and Variability.

(i.) The Coefficient of Variation V.—In dealing with the comparative variation of

men and women (or, indeed, very often of the two sexes of any animal), we have

constantly to bear in mind that relative size influences not only the means but the

deviations from the means. When dealing with absolute measurements, it is, of

course, idle to compare the variation of the larger male organ directly with the varia-

tion of the smaller female organ. The same remark applies also to the comparison of

large and small built races.

If the absolute measurements^ have in the case of man to be on the average altered

in the ratio of 13 to 12 to obtain those of the woman, if Mr. Galton has gone so far

as to replace any woman by an equivalent man on this basis, then, clearly, to compare

* The ratio 13 to 12 is not only true of statnre, but approximately of several other organs, weight,

brain -capacity, &c, &c.
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deviations in man and woman, we must alter the deviations in the same ratio.

Freeing ourselves from this particular ratio, we may take as a measure of variation

the ratio of standard deviation to mean, or what is more convenient, this quantity

multiplied by 100. We shall, accordingly, define V, the coefficient of variation, as

the percentage variation in the mean, the standard deviation being treated as the

total variation in the mean ; since the p.e. = '674,506 X S.D., V multiplied by

•674,506 may be called the " probable percentage variation." Of course, it does not

follow because we have defined in this manner our " coefficient of variation/' that this

coefficient is really a significant quantity in the comparison of various races ; it may

be only a convenient mathematical expression, but I believe there is evidence to show

that it is a more reliable test of " efficiency" in a race* than absolute variation. At

present, however, we will merely adopt it as a convenient expression for a certain

function, and proceed to examine its relation to correlation.

Let wi]$ m3 be the means of two correlated organs ; <rv <r.2
their standard deviations

;

r their coefficient of correlation ; V1? V3 their coefficients of variation ; and R
2 , R2

the respective regressions for deviations d% and d
l
of the two organs.

Now

or

and similarly

0"l % —, T V
s
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But we see that the amounts d
2
/m2 and d

l
/m

l
are equally significant deviations in

the qase of the second and first organ, while the amounts 'R
l
/m

1
and Rg/m2 are

equally significant regressions in the case of the first and second organ.

t

It follows, therefore, that the significances of the mutual regressions of the two

organs are as the squares of their coefficients of variation.

Hence inequality of coefficients of variation marks inequality of mutual regressions.

Now coefficients of variation are rarely, if ever, equal for the same organ in corres-

ponding classes of men and women. In dealing with male and female skull measure-

ments for a great variety of races, this inequality is often very marked, and, therefore,

differences of variation tell, especially in mutual regression in the case of sexual

selection and inheritance from the opposite sex. They are sufficient, I think, to pre-

clude Mr. Galton's theory of the mid-parent from being considered as more than a

# By " race efficiency," I would denote stability, combined with, capacity to play a part in the history

of civilization. I hope later to publish details of variation, especially in skull measurements of different

races of man, the data of which I have been for some years reducing.

f For example, 1'' and -J-f" I term equally significant deviations or regressions in the stature of man

and woman, and 1" and
-f-f

'' in the stature of woman and man.
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first approximation. Turning to Table V., we see that variation in height is greater

for males than females ; but while very sensible for husbands and wives, and sons

and daughters, it is insignificant for fathers and mothers. This superiority of male

to female variation, as measured by the coefficient of variation, is in accordance with

the usual belief that the male is more variable than the female, but it is entirely out

of accordance with the great bulk of the statistics I have so far reduced. The belief

seems to have arisen from a very loose notion of how variation is to be estimated*

These stature statistics of the English middle classes seem to some extent anomalous.

For example, I find from statistics of stature in the German working classes :—

-

Male coefficient of variation . . , =4*0245,

Female „ ,,...= 4*2582.
?j yi

Ratio of female to male coefficient = 1*058, thus more than reversing the highest

English ratio, that of husbands and wives. It is noteworthy that, while the varia-

tion is thus reversed, the ratio of the mean heights equals 1*078, and remains practi-

cally the same. These remarks are introduced in order to prevent any too hasty

generalisation as to the nature of male and female correlation based on a current

belief in the greater intensity of male variation.

(ii.) Coefficient of Correlation and Coefficients of Variation,—Let x and y be two

correlated organs, and let £ and rj be corresponding deviations from the mean values

m
x
and m

2 . We shall suppose that £ and rj are so small that the squares of the ratios

^/m
1
and r]/m

2 are negligible as compared with the first powers, Let r be the

coefficient of correlation of x and y, orv o-2 their standard deviations, vu v% their

coefficients of variation, and let z be any function f(x, y) of x and y with a deviation £,

corresponding to f and yj }
and a standard deviation, mean and coefficient of variation

respectively S, M, and V.

Differentiating z=f(x,y) and remembering our hypothesis as to the smallness

of the variations, we have :

t =M + fyV-

Squaring :

Summing for every possible value of f and rj, and dividing by n the total number

of correlated pairs :

n J n Jy n J Jy n

or,

Now, if there were no correlation, we should have: 2^ = f? cr^ + f/ &% \ hence
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any Jaw of frequency whatever which causes S (£77) = 0,—for example, if it be equally

likely that rj occurs with an equal negative or positive value of £—will show that

x and y are independent variations. Hence, if we define r = S(^)/(ncr
1
cr

2.)
as the

coefficient of correlation, we see that it has a significance extending much further

than the normal law of error. Just as cr
l5

cr3 are radii of gyration (and independent

of any special law of error), so S (gr)) is a product moment, and its vanishing marks

the absence of correlation, or directions of independent variation.

We see, then, that the coefficient of correlation may be found from

VvfyVl (Tr

or by calculating standard deviations.

The question naturally arises as to what is the best value oi f(x9 y). This will

often be already answered by the data themselves. A common case is that in which

the variations in x and y are given, and the variation in their ratio or the index x/y

is calculated. In this particular instance fx = M./m
l
and fy = — M/m2 . Hence

We thus throw back the determination of correlation on ascertaining three

coefficients of variation.

This formula, while less general than the one previously given, in that we have

neglected squares of small quantities, is more general in that we have not limited

ourselves to any special law of frequency.

(in.) Example.—The formula may be illustrated by the following statistics taken

from a not yet published paper on variation in man. r = coefficient of correlation

between length and breadth.

Adult Male Crania.

Professor Flinders Petrie's newly discovered race.*

Length of skull . . . nh = 185*2777, <t
x
= 5*7783, v

i
= 31187

Breadth of skull . . . m2
= 135-0194, cr3

= 4*4076
3

v
9i
— 3*4183

Cephalic index, B/L . M= 72*9379, $ = 2*8848, V = 3*9551

* Professor Flinders Petrie kindly replied to my request for 100 skulls of a homogeneous race, 3,000

to 4,000 years old, by bringing back to England the finest anthropological collection—-skeletons as well

as crania—known to me. The collection was packed and brought to England at the charge of Mr.

A. B. Pearson-G-ee. Mr. Herbert Thompson has made a series of measurements on 301 skulls, J and

? , details of which will be published later, and the above constants are calculated from his measure-

ments. The date of the new race is about 3000 B.C.
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Modern German (Bavarian Peasants*).

Length of skull . . , m
x
= 180*58, ^ = 5*8441, v, = 3*2363

Breadth of skull . . . m9 = 1 50*47, cr = 5*8488, u, = 3*8871

Cephalic index, B/L . M= 83-41, % - 3*5794, V = 4*2913

r = -2849.

Modekn French (Parisianst).

Length of skull . . m
Y
= 181-85,

°"i
== 5*9420, Vl = 3*2675

Breadth of skull

.

m%
= 144-93, cr9 == 5*2139, v2

~; 3*5975

Cephalic index, B/L M = 79*82, ^ —= 3*7865, V = 4*7438

The probable error of r in all three cases lies between '06 and '07. Now it is clear

that had we only dealt with the race from Egypt and the Bavarians, we might easily

have concluded that the coefficient of correlation was constant for local races of man,

and had remained so for nearly 5,000 years. The French numbers completely upset

this view. In order to test my French results I give another series from the

Anthropological Collection at Munich ; the skulls are those of French soldiers who

died at Munich during the Franco-German war.

Modern French (Peasants).

Length of skull . . . m
x
= 179*93, o^ = 6*2987, v

1
= 3*5006

Breadth of skull . . . m
2
= 143*51, cr

3
= 5*4208, v

2
= 37772

Cephalic index, B/L . M = 797857, t = 3*8410, V = 4*8141

r — 1265.

This collection numbers only 57 crania, and the probable error of r is about *09,

but clearly we have the same general features as in the previous French series. In

particular the closeness in the line for the cephalic index constants is remarkable.

The value of r might possibly be the same as for the Parisians ; it is highly improb-

able that it should agree with the value of r for the Germans or the race from

Egypt. We are compelled to conclude, therefore, that it is very unlikely that

" Galton's function " is constant for all local races of man,

# Calculated from measurements given by Professor J. Ratoe :
' Beitrage zur physisehen Anthro-

pologic der Bayern,' Bd. 1, S. 88, Kapitel VI., I may take this opportunity of acknowledging the

extreme kindness of Professor Ranke in helping me in a variety of ways.

f Calculated from measurements extracted from the manuscripts of M. Paul Broca, which I owe
to the courtesy of M. Maxouvrier. He has responded to my request by forwarding to me copies of a

great variety of measurements, which will be largely used in a paper on variation in man.
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An examination of the above numbers brings out a fact which I am not sure has

been noted before : namely, the alteration from dolicocephaly to brachycephaly appears

to chiefly depend upon an alteration in the breadth and not in the length of the skulk

We see too that, if variation be judged, not by standard-deviations, but by the

coefficients of variation advocated in this paper, the breadth of skull is in all cases a

sensibly more variable quantity than the length, and, further-—a point to which I

shall return on another occasion—that the more civilised races are the more variable.

Both of these results have, I believe, very important bearing on the mathematico-

statistical theory of evolution. On the present occasion the above example is only

given to illustrate the relation of variation to correlation.

(6.) Collateral Heredity.

(a.) Stature in Man.— The whole theory of correlation as applied to uniparental

inheritance may be at once applied to correlation between brothers, sisters and

brothers and sisters. To illustrate the theory I give the following tables, again

based on Mr. Galton's statistics.

In the pairs sister-sister and brother-brother the elder sister or the elder brother

has been taken first in order to ascertain the effect of earlier birth on correlation.

In the pairs sister-brother, I had no data as to relative age.

Table VI.—Variation.

Class. Number.
Mean Height

in inches.

Probable
error of

M.H.

•0617

'0695

S.D.
in inches.

Probable
error of S.D.

Elder sisters of sisters ....
Younger sisters of sisters . . .

595
595

63-869

64-199
2-2303

2-5119
•0436

•0491

Elder brothers of brothers . .

Younger brothers of brothers

605
605

69 0174
69*0814

•0715

•0725

2-6080
2-6434

2-2430

2-7164

•0506
"

'0513

Sisters of brothers .....
Brothers of sisters

1181
1181

63-9274

69-0963

•0440

'0533

•0311

•0377
|

1

Table VII.—Correlation.

Class.

Sister-sister

Brother-brother
Sister-brother .

Coefficient

•4436

•3913

'3754

MDCCCXCVL—A.

Probable error of r.

•0203

'0216

'0158
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Table VIII.-Regressioa

Class, Coefficient of Regression.

Younger sister on elder sister . .
"

. .

Elder sister on younger sister ....
•4996

•3939

•3966

•3860

•3100

•4547

Yoanger brother on elder "brother » . .

Elder brother on younger brother . . .

Sister on brother. .,.....
Brother on brother .........

Table IX.—Variation in Selected Groups,

Selected fraternity.

Younger sisters of selected elder

Elder sisters of selected younger

ST)
in inches.

Sisters of selected brother

Brothers of selected sister .

2*2512

1-9989

Yoanger brothers of selected elder . 1
2*4327

Elder brothers of selected younger .
j

2*4000

2*0789

2*5178

S.D.
in inches.

2-2430

2*7164

Unselected.

2*5119
j All younger sisters of sisters

2*2303 ! All elder sisters of sisters

2 6434 | All younger brothers of brothers

2*6080
i All elder brothers of brothers

All sisters of brothers

All brothel's of sisters

These tables have been calculated in precisely the same manner as the previous

(b.) Conclusions.—'Now these results seem, at several points of very great sng-

gestiveness. In the first place, with regard to variation, we see that elder sisters are

significantly more mediocre than younger sisters ;
younger sisters are taller and more

variable. The same difference appears in the case of eider and younger brothers, but

the probable errors do not allow us in this case to assert that the difference is

certainly significant* To illustrate this conclusion we give the constants for pairs of

sisters, no respect being paid to relative age.
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Table X.—Sisters of Sisters.

Mean height

Probable error of mean height

64-0454
•0655

2-3668

•0463

Coefficient of correlation r . . .

Probable error of r

Coefficient of regression .

S;D. of array of sisters of selected sister

•4386

•0205

•4386

2-1270

It will be seen from this table that elder and younger sisters of sisters are

respectively less and more variable than sisters of sisters in general. It will be noted

also that sisters of brothers are, both in stature and variation, nearer akin to elder

sisters of sisters than to younger sisters. It deserves accordingly to be investigated

whether or not sisters are not on the average older than brothers—on this point I have

no data. As sisters of brothers approximate to elder sisters of sisters, so brothers of

sisters correspond more closely to younger than to elder brothers of brothers. These

are points which require fuller investigation, when ampler statistics are forthcoming.

Turning to correlation we note that the coefficients in the case of collateral

inheritance are slightly greater than in the case of direct inheritance. It will be

remarked at once that the values are much less than those given by Mr, Galton,

"Natural Inheritance," p. 133, who has himself drawn attention to the considerable

difference between the constants for collateral inheritance given by his R.F.F. Data

and by his Special Data. Mr. Galton having kindly allowed me to use his data, I

have recalculated from the formula r = S (xyy^ncr^) the value of r for the Special

Data, taking my pairs of brothers precisely as I had done for the Records of Family

Faculties. I find r = '5990 with a probable error of ± •0124. This value is not as

high as Mr. Galton's, but differs very widely from the value #3913 given above.

In making the calculations, however, I was much struck by the peculiarities

presented by a certain portion of the data, which I will speak of as the Essex

contribution. The brothers therein were very short and remarkably close together,

I therefore went through the calculations again, separating the Essex contribution,

and with the following results :

—

Mr. Galton's Special Data.

Mean height. . .

Probable error . .

r for brothers . .

Probable error of r

Whole population.

a
68-544

•0402

•5990

•0124.

Essex contribution.

//

67-797
•1013

•7175

•0200

Remainder.

68*797
•0457

•5574

•0152

4** \s 4&£
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Now the probable error of the difference of the Essex contribution and the

remainder is •1111
//

for height and D251 for correlation. Thus difference in height

is nine times, and the difference in correlation more than six times the corresponding

probable error. It is absolutely necessary therefore to conclude that the Essex con-

tribution differs significantly from the remainder of the data. Now the Essex

contribution appears to be drawn from brothers in a volunteer regiment, and I am
inclined to think there may be two sources accounting for its peculiarities,

(a) unconscious selection as to height by those who join the volunteers, (6) a greater

correlation among the agricultural and working classes than among the middle classes.

At any rate the great variation within the family to be found in the R.F.F, data does

not repeat Itself either in the Essex contribution or in other portions of the special

data, which appear also to be drawn from military and working class sources.

I would accordingly suggest that the R.F 9F. data and the Special data give

different results, because the latter are largely drawn from a different class of the

population from the former (and possibly In the case of volunteer regiments by a

method which itself tends to emphasise correlation). I should expect that the

influence of natural selection is far greater—witness the greater infantile mortality

—

in the working classes, and that accordingly we should find the variation in a

fraternity sensibly less, or the correlation much greater. I believe, then, that

difference of variation In different classes of the community will ultimately be found

to account for part, if not all, of the difference between the two values given for the

correlation of brothers by the Special data and by the RF.F. data.

Considering the amount by which the elimination of a portion only of the hetero-

geneity of the Special data reduces r, it does not seem likely that the R.F.F. data are

so wide of the mark in the correlation values as might at first be thought. I doubt

whether the correlation coefficients for collateral inheritance—at any rate in the

middle classes—can be greater than *5. I have not at present sufficient data of my
own to make a trustworthy determination of brother-brother correlation, but I was

able to find the correlation of 237 brother-sister pairs from about 160 families. The

measurements were taken without boots, and give values for the mean heights of

brothers and sisters sensibly over 69" and 64" respectively. The families were all

middle-class families—mostly those of male and female college students. They thus

approximate to Mr. Galton's R.F.F. series, The result was

The previous result was

r="-4703± '0308

•3754 ± '0158

The probable error of the difference therefore = *0346 and the difference '095,

between two and three times the probable error. The two differ, of course, consider-
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ably,* but they are nearer together than to Mr. Galton's #

67, and being entirely inde-

pendent series, may be taken to justify the statement made above that the coefficient

for the middle classes can hardly exceed *5. Thus there is not, I think, sufficient

ground at present for forming any definite conclusion as to the manner in which lineal

is related to collateral heredity. It does not seem to me necessary that the coefficient

for the former should be half that for the latter, as supposed by Mr. Galton.

In some respects, indeed, the Special data verify the conclusions we may draw from

the K.F.F. data. Thus R.F.F., Special data, and the two components into which-

1

have divided the latter, all four agree in making the younger brother taller than the

elder brother. The variability of both brothers is practically equal in the Special

data and slightly greater than that of the R.F.F. data—2"656 as compared with 2*626

—a difference not significant, and which, if it were, might be put down to the

mixture of classes in the Special data.

Assuming that the regression coefficients in Table VIII. give the relative if not

the absolute values for collateral inheritance, we draw from them a few suggestions

lor further inquiry when the statistics are forthcoming. In the first place, sisters are

more like each other than brothers. At any rate, the younger sister is more like the

elder sister than brother is like brother. If this appears to contradict the principle

that sons are more like their parents than daughters, a solution of the paradox must be

sought in the relative variabilities of daughters, elder sisters, and younger sisters.

To compare the strength of inheritance in brothers and sisters, we have to consider

not '3100 and -4547, but these coefficients of regression multiplied and divided

respectively by 13/12, or *3358 and '4197, whence we see that the brother takes

more after the sister than the sister after the brother.

It will be wise, however, to lay no great stress on these results, until a wider series

of statistics has been collected.

The following example must be taken only as the roughest approximation, but so

far as it goes as confirming the above results.

An exceptional grandmother in Badent had a length-breadth head index of 90, her

20 grandchildren had a mean head index of 83*55, with a S.D. = 3*025. The mean

head index of the general population! was 83*15 with S.D. = 3*63. Thus, if r
x
be the

regression of offspring on parent, and r2 of offspring on each other, r^ X 6*85 = *4,

and ^{1 - r9
a
) = 3*025/3*63.

Hence, r
x
= *24 and r% = *55. Considering the large probable error of the S.D. of

the fraternity (*32), these results indicate inheritance in head indices of the same order

as in stature.

* The difference is to be expected. Mr. Galton's R.F.F. series allows for due weight being given to

the variability in large families. My statistics take only four members at a maximum, and frequently

only two out of each family.

f O. Ammon, 4 Die natiirliche Auslese beim Menschen,' p. 13. Three children were unmeasured, and

I have accordingly had to disregard this generation.

J Calculated from results for 6748, Badtsnser, given by Ammon, p. 67.
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(7.) Special Case of Three Correlated Organs,

We need not stay long over the general theory as it has been fully treated by

Bravais. We indicate its general outline in a modified form. By p. 263 we have, if

x, y 5
z be the deviations from the means of the three organs, and xrv cr3 , o*

3
their

standard deviations,

i ( \ x%
i \ V2,

i \ & 2v2 2zx 2xy \= \j& V °i <V OjT *2<r3 ergo"! (r
3
(r3 /^^ ^£ #

This may be written in either the form,

X e ~~ ^v^3)" *£dxdydz . * (A),

or,

= \jC V
°"l Al °3 Al °V

X e n -o-a' Ai w3 / Ai
~ o-^3 "aj" ~$ dxdydz . . . (B).

Integrating A for a?, y, 2 successively between ± °°> we have, if n be the number of

correlated triplets, and

w = C.(2^o-
1
crs(r3/v

/
x,

or,

C = nVx/((2?r)
3/2 o^oyrg).

Integrating B for x between ±00, we have

-rv as/ - j f (
y Y hXl - ^ +( *Y AgAi " ^ - 2j/z nXi + v*v* \P = C e ^ o-2 / Ax

V <r3 / i/i <r3o-s Ax
i ^ ^*

But this must be the correlation distribution for y and 2: treated independently of x
9

01% comparing with p. 264, if ru r
2 , r

3 be the three correlation coefficients for the pairs

?/3, &b, asy respectively, we have

V(Ai\> - ^) = 1 - ^ = x
1
/(x3x1

- „,*).

Integrating A for a? and ?/ from ±M,we must have the distribution for z treated

independently, or a normal distribution cr3 ; this gives at once
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Hence we have by symmetry the equations,

Xj = x (1 - r
x% X2 = x (1 ~ ri), X

3
= x (1 - r3

3
),

We easily deduce

X
S
0*1 — 'Vs) = (Kh ~ ^l

2
) (^A + Ws) — (

Vzh 4" ^l) ("8X3 + ^2) = *iX>

or,

v
x
= x (n — %)»

and similarly,

"s = X (
rs — Vi)> ^3 = X (

r
3 — r

i
r
z)-

Finally,

X
s {(r

x
- r2r3 ) (1 - r-,

2
) + (r

3
- »v8)

(r
3
- r^)} = xn,

or,

X (1 - r
x
* - ri - r

3
2 + g^n,^) = 1.

Thus all the constants are determined, and we have,

P
iiv x

This agrees with Beavais' result, except that he writes for rlt r2>
r3 the values

X(yz)l(na-2a-3 ), etc., which we have shown to be the best values (see he. cit., p. 267).

Obviously we have the following general results. If S x
be the standard deviation of

a group of ^-organs selected with regard to values \ and hs
of y and z,

and if Aj be the deviation of the mean of the selected cc-crgans from the ar-mean of the

whole population

1 1 — T^ «r
3

*' 1 — ?Y cr
3

Expressions of the form ^-^^ will be spoken of as coefficients of double correla-

tion, and expressions of the form ^^f - as coefficients of double regression*

* [The above values for 2j and & are still true, as Mr. G. IT. Yule points out to me, whatever he the

law offrequency, provided the standard-deviations of all arrays be the same and \ be a linear function

of h2
and 7i

?> .]
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(8.) Double Regression and Biparental Inheritance,

(a.) General Formulce and Comparison with the Theory of the Midparent.—If we

apply the results of Section (7) to the problem of inheritance, we obtain some interesting

results. Let r
x
= coefficient of correlation for the same or different organs in two

parents, i.e., be the measure of assortative mating; r3
= coefficient of correlation of

organs of offspring and male parent, i.e., be the measure of paternal inheritance
;

r
2
= coefficient of correlation of organs of offspring and female parent, i.e., be the

measure of maternal inheritance ; then the above formulae express the chief charac-

teristic of biparental inheritance as modified by assortative mating. If r
l9

.
as

probably is frequently the case, be small, then we see that the effect of assortative

mating is to reduce the deviation of the offspring. Suppose there were no assortative

mating, then the mean deviation of the offspring of selected parents would be

'h — r
3 ~r *h t r2 ~r 'h>
UO V'.)

and the actual value r
l9
being small, is clearly less than this. Again, even admitting the

insignificance of the assortative mating in some cases, we see that, unless r2 = r8 ,

and farther special relations hold between the variations of parents and offspring, this

formula is not reducible to a mid-parent formula.

For example, in the case of stature, consider the male offspring of two pairs

of parents. In the first case, let the father be 4" and the mother •923"' above the

average ; in the second, let the father be 1" and the mother 3"*692 above the

average. In both cases the height of the mid-parent is 2"* 5 above the average,

and the average male offspring will, on the mid-parent theory, exceed the mean by

l""67. But in the first case, the bi-parental formula gives 1"*95, and in the second,

1"'52. In the case of the female offspring of the same pairs, the mid-parental formula

gives l
//,

54 for both pairs, and the bi~parental formula 1
//#
41 and 1"'25 respectively.

These differences are due to the prepotency of paternal inheritance, and to the

inequality of the variation in different male and female groups.

These results have, of course, no greater validity than the statistics upon which they

are based—a validity which Mr. Galtojst has been very careful to weigh
(

f Natural

Inheritance/ pp. 73, 131), but, I think, they suffice to show that the mid-parent theory

must be looked upon as only an approximation of a rough kind.

It must further be borne in mind, that the variability of a fraternity with given

mid-parent is, if assortative mating be neglected, X l
= <r, ^/l — r2

s — rs
2

; or if r2 be

= rB , it is equal to vls/\ —•
2r

2
2

, and not <r1
y/l — r3 a

(6.) Effect of Assortative Mating on Cross Heredity.-—Our formula of course

applies to the problems I have classed as those of cross heredity. Unfortunately, I

have no statistics at present to give any illustration of the intensity of cross-heredity.
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Still one or two remarkable general principles may be noticed. Let us suppose, what

is not improbable, that there is a first organ, say in the father, which has no sensible

correlation with a second organ in the offspring, but that the latter organ in the

mother is closely correlated by assortative mating with the first organ in the father.

The formula for regression in the offspring of parents having the deviations h.
2
and h

3

in the two organs (or characteristics) will now be

7 - ^!£s_ ^J_ 7 i

TA- 5l
1 — 7\

3
O-g ^ 1 ™ ?%* G-q

This shows us that the possession in any exceptional degree of the first organ by

the father will actually reduce the amount of the second organ which the offspring

inherits from the mother. Let a special example be used to illustrate this. Suppose

the problem to be the inheritance of artistic sense from the mother and (h
l9

h%) be

measures of the deviations of this sense in son and mother from the normal. Suppose

further that }i
%
be a measure of the father's physique, say his girth of chest. Now it is

conceivable that artistic sense in the mother may be closely correlated with physique in

father. If now we deal with artistic sense of the son as related to physique in father

and artistic sense in mother, we conclude that exceptional physique in the father will

reduce the exceptional artistic sense which the son inherits from his mother. Simi-

larly, the exceptional physique which the son would inherit from his father would be

reduced by exceptional artistic sense in his mother. It will be noted that these

results have no relation whatever to the coexistence or not of artistic sense with

physique in the father or the mother. They depend entirely on the influence of

assortative mating. It is remarkable that, given mothers of high artistic sense, then

this will be handed down in a greater degree to those offspring whose fathers have a

physique below the average, than to those of fathers who have a physique above the

average.

The above example is not to be taken as a demonstrated truth, but as an illustration

of the effect of assortative mating on cross-heredity. Innumerable similar statements

can be made, but it seems desirable to await the collection, of definite statistics before

discussing them at length.

The only statistics which are at present at my disposal for the consideration of

bi-parental inheritance are Mr. Galton's " Family Records," and to these I now turn.

MDCCCXCVT.

—

A, 2 P
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(c.) Bi-parentcd Inheritance of Stature.

Table XII. -—Correlation as Influenced by Assortative Mating.

Class.

Daughters and fathers .o
J) mothers .

Sons and fathers .

mothers .jj

* t

Correlation coefficients.

Modified by mating.

•3368

•2528

•3710

•2673

Direct.

•3603

•2841

•3959

•3018

Table XIII.— Regression Coefficients as Influenced, by Assortative Mating.

Class,

Regression coefficients.

Modified by mating. Direct.

Daughters on fathers ....
„ mothers ....

Sons on fathers

„ mothers . . . .

•2895

•2609

•4176

-2997

•3096

•2932

•4456

•3384

Thus we see that both in correlation and regression very sensible differences are

made by the introduction of bi-parental formulae.

Table XIV.-—Variation in Selected Groups.

_ __

—

— '

Class.

Standard deviations.

(i-)

All offspring.

(ii.)

Offspring of

selected mother.

(iii.)

Offspring of

selected father.

(iv.)

Offspring of

selected mother
and father.

Sons
Daughters ....

2-617

2-347

2-495

2-250

2-403

2-189

2-300

2-108
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General Formulae for Regression in Stature:—
h.
2
= deviation of father ; hz

= deviation of mother.

Sons :—The mean height of array of sons corresponding to fathers of height k2
and

mothers of height h
3

is

h
i
= '4176 h% + -2997*3,

or,

= -41?6A2 + '2766 (l'08A3).

Daughters :—The mean height of array of daughters corresponding to fathers of

height h
2
and mothers of height h

s
is

h\= -2895 Aa + -2609 A
8

.

= *3136 (Vl-08) + '2609 /i
3 .

In the second expressions given with both formulae, the parental heights are

exhibited in terms of the equivalent heights of the sex of the offspring.

Explanation of the Tables.—Table XII. gives the value of the correlation coefficient

rQ — r
x
r^

as influenced by assortative mating, e.g., -z ^ . The values of the simple correlation

coefficients (r
l9

r2 , r
3 )

are taken from Table II. Against each coefficient is placed the

value of the " direct " coefficient, on the supposition that ?\ = — e.g., r
3
—in order to

exhibit immediately the influence of assortative mating.

Table XIII. gives the regression coefficients as influenced by assortative mating,

e.g., ~y ~ ~~ -J (see p. 286), and "direct" or uninfluenced by such mating, e.g.,

r3 — ; the former are calculated from the values given in Tables XII. and I., and the

latter are reproduced from Table III.

Table XIV. exhibits the decreasing variation in arrays of sons and daughters,

when we select (i.) neither father nor mother, (ii.) a mother of given type, (iii.) a father

of given type, and (iv.) both mother and father* of given types; (i.) is taken from

Table L, (ii*) and (iii.) from Table IV., and (iv.) is calculated from the formula for

Si deduced on p. 287.

(d.) Conclusions, Prepotency of Fath er.—These tables bring out the essential

prepotency of the father in the case of both sons and daughters, the ratio of the

contributions being 42 to 28 in the first case and 31 to 26 in the second case. A
prepotency of the father * in other characteristics has been noted by Mr. Galtojst

in his " Hereditary Genius/' but it is there attributed to the greater ease with which

the male characteristic (genius) makes itself apparent. It deserves, however, to be

* Prepotency of either parent might, I think, be easily tested statistically in the case of morbid

inheritance, particularly in tubercular disease. Dr. R. E. Thompson (' Family Phthisis,' pp. 89 and 95),

indicates a prepotency of the mother in both male and female inheritance of this disease.

2 P 2
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considered whether there is not, at any rate in many characteristics, an actual and

not apparent male prepotency. It is. perhaps, needless to point out the sensible, if

small, modifications introduced into inheritance by assortative mating.

Lastly, we note in Table XIV." the increasing tendency to " breed truer" as we

select (i.) mother, (ii.) father, and (iii.) both mother and father,

(9.) On Some Points connected with Morbid Inheritance.

(a,) On the Skipping of Generations.—It must be carefully borne in mind that the

formulae we have discussed make not the least pretence to explain the mechanism of

inheritance. All they attempt is to provide a basis for the quantitative measure

of inheritance—a schedule, as it were, for tabulating and appreciating statistics.

At the same time we may reasonably ask whether our formulae are wide enough to

embrace certain of the more isolated and remarkable features of heredity. Let the

subscripts ], 2, 3, 4 refer respectively to father, mother, son, daughter. Thus, cr3

would be the S.D. of the son population, h% a deviation of a mother from the mean

of mothers, ru the correlation coefficient of fathers and daughters, and so on. Now
if we consider the general form for single correlation :

__ i / a;
2 2rxj

_

y* \ 1_

~ _ „ .

~

9
' W* ~ o-V ; * a'

7V 1 - r*
fa _-. faf\*Cr

we may give any values whatever to a and or", and any value to r, which is less than

unity, and deduce the theoretical results. Let us suppose r to be of finite value, but

that a" is very small as compared with or'. Then the regression of y on x = h'ra'jar

will be very small, while the regression of x on y = h"ra
'
iar

f

will be large. On the

other hand, the deviation in y will never be very remote from its mean. All this is

perfectly true whatever be the value of r.

Now let us apply this to some secondary sexual characteristic, say hair on the

face. A very small amount of hair on the woman's face, with, a very large amount of

hair on the man's face, is compatible with a large value of r ; a small amount of hair

on the woman's face may be accounted for by a low mean and very small standard

deviation. The regression from father to daughter will be expressed by

or, since cr4 is extremely small, the daughter will hardly differ sensibly from the

mean small hairiness of women. The regression from daughter to daughter's son

will be

(To j CTr> CTj
(

-j

r
23 Z~ 'h = r23r14 ~T ' " fl

l
<J

2
(Jg CTj
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or, since <x.2 and cr^ are nearly, if not practically, equal, and <t% and cr
l
also, we have

—

regression from grandfather to grandson through the female line = ^^h^i-
This may be a very sensible quantity, if the correlation coefficients are of consider-

able magnitude. What we have here, then, is the skipping of a generation, the

inheritance of an especially male characteristic through the female line. The same

reasoning would apply to the inheritance of an especially female characteristic through

the male line, The formula, of course, gives no explanation of why crd,
is small and

ru finite. It is only suggested that these outlying facts of heredity are not neces-

sarily inconsistent with the formula. It may be argued that this account of skipping

a generation wrould only apply to a characteristic which actually exists in both sexes,

even if only in a small degree in one of them, and further, it assumes the distribution

of this small degree to be of a normal character. This argument would certainly

touch characteristics functionally necessary and peculiar to one sex ; it may be

doubted how far it would affect the question of secondary sexual characteristics,

which may have rudimentary values in the sex of which they are not characteristic. It

must further be remembered, however, that our correlation formulae are perfectly true

for cross heredity, and accordingly the idea of rudimentary value may be pushed a

good way, even to the idea of latency in a second closely-allied organ. The idea of.

latency here is not to be pressed into any theory of panmixia or of germ plasm.

Given that certain bulls get good milkers, we have the problem, what organ or

characteristic, rudimentary or not, in bulls has the highest numerical coefficient

of correlation with the milk-giving capacity of the cows they beget ? We may not be

able to ascertain this organ or characteristic, but the problem is really a statistical

one, and does not assert anything as to the mechanism of heredity. The skipping of

a generation in secondary, or even in primary, sexual characteristics, does not seem

accordingly to present anything of a character which our formula fails to cover. In

particular, in the case of morbid inheritances, such as gout and colour-blindness,

which, while peculiarly male diseases, are yet handed down through the female line,

our formula seems to be of considerable suggestiveness* This suggestiveness

essentially depends on the independence of the two factors—correlation and varia-

tion—which are components of the formula. Thus, while there appears to be no

necessary relation between power of transmitting and capacity for developing a

disease, the independence of correlation and variation will probably allow us to

account for most special cases. The reader must be careful to note that we are not

compelled to give r or <r meanings relating directly to the intensity of the disease ;

they may refer to the size of organs or intensity of characteristics on which the

liability to the disease or its intensity directly or indirectly depends* Bearing this in

mind, we have only to put r
i3 finite, or vanishingly small, while both cry and cr3

are finite, to grasp (i.) how gout may be transmitted from grandfather through either

son or daughter to grandson, and yet (ii.) how colour-blindness and haemophilia are

transmitted, as a rule, through daughter only to grandson—in both cases the
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daughter generally herself escaping (ru finite arid cr
:ii
very small). The protection of

the transmitting sex is due, not to smallness of correlation, but to relative smallness

of variation in that sex.

(6.) General Formulae for Four Correlated Organs.-—Another point —especially

important for the problem of morbid inheritance—is the relative ages at which a

characteristic appears in parent and offspring. Dauwtn has noted how a characteristic

appearing at a given age in the parent will reappear at the same age—sometimes
indeed earlier—in the offspring. In particular, inherited diseases tend to develop

themselves at an earlier date in the offspring than in the parent in proportion to

the intensity of the inheritance. This appears to be especially the case in gout,

rheumatic fever, diabetes, and phthisis.*

Now, the quantities with which we have to deal here are four in number, ages of

parent and offspring on appearance of disease and intensities of the disease in the

parent and offspring. We require, accordingly, the formulae for triple correlation.

Proceeding, as in the earlier discussions, we find, if x^ x,2} x
S9

x^ be the deviation of

the four quantities from their respective means, cr
l3

cr
2 , <x

3 , cr4 their standard deviations,

r
i2>

r
i3>

ru> r23> r24> r34> the six correlation coefficients pair and pair of organs or

characteristic % Sx
l
Sa% Sa% 8x4 , the frequency out of a total of n quadruplets of the

quadruplets with organs or characteristics between x
l3

x^ x
3 , x

it
and x

x + Bx
l9

X% —p OXqj Xo "~p OXq
}
Xa —p OXa^ '.

z . g 2 v. \ oi / \ cr2 / \ cr3 / \ cr^ / <j x<r% o^ crjcr4
~

<r
:i
<rs cr^ 0-3O-4

47r3
o-

1
a-

2
a-3o-

where
A

l — L '23 '34 '42 ^T ^ / 23
/ 34'423

v
i% = Tn (1 - r34

3
)
- ^13^23 - rHru + ru (rHr23 + r

13
r24),

and
1 IX — ] - r

l2
2 ~ Tli ~ TU ~ rJ ~ ^24

2 - ^34
2 + V^M + r23*rU + ri^U

+ 2 (^23r24r34 H~ r34rl4r13 + rl%
rUrM 4" rl2

r
i3
r
23/

"" ^ (
r
l2
rl4

r23r34 + r
l4
rl3r23r24 + rl2rl3

r24r34J

»

while the remaining: X's and v$ may be written down by symmetry from X
a
and v^.

Accordingly we have for regression the formula

U -%£L7, Ju^^l-h j~hL£±%

and for the standard deviation of a group of organs x
9
corresponding to selected

organs A
a , A3 , /i4 (i.e., an array)

2i = o'J'SxK

* Here, as elsewhere, I liave to thank my friend, Dr. H. T. Ryle, for the kindness with which he

has allowed me to examine the material he has collected with regard to morbid inheritance.
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(c.) Antedating of Family Diseases.—We may now apply these results to the case

of morbid inheritance, making the following assumptions :

—

(a.) The distribution of the disease with regard to both age and intensity will be

taken to be the same for any two successive generations, and to be normal.

(b.) The age at which the disease appears and its intensity are both directly

inherited, but the age of appearance and intensity of the disease in the parent are

not directly correlated with the intensity of the disease and the age of its reappear-

ance in the offspring.

Let e be the coefficient of correlation between the age of appearance of disease in

the parent and the age of the offspring at its reappearance ; let cr be the standard-

deviation for the frequency of the disease at different ages, and M the mean age at

which the disease appears in the population.

Let 7] be the coefficient of correlation between the intensity of the disease in the

parent and the intensity of the disease in the offspring ; let cr' the standard-deviation

of the intensity-frequency and M' be the mean intensity.*

Let M + A 1? M' + Ii> be the mean age of the appearance of the disease and its

mean intensity for an array of offspring, whose parents exhibited the disease

when M + A2
years old with an intensity M' + Ig-

Let the subscripts 1, 2, 3, 4 refer respectively to age of offspring, age of parent,

and intensity in offspring and intensity in parent. Then, in the formula for triple

correlation, we must put

:

Hence

:

\
{
= X2

= 1 — rf — K%, vu = € + 7] (k? — 07),

X
3
= X4 = 1 — €

a — /c
2

, vu = 7) + € (k2 — erj),

^13 = VU= K — *<y — €V)>

VU = ^23 = — K
(
€ + V)>

l/x = 1 — €
2 - yf — 2/c

2 + (#c* — erjf.

Substituting these values in the regression formula, we find :

A
i — ~l _ rf

_~^T A2 + "'i~v*~Z~3r "J M — iZTrfTZT^ 7 a-

Now as the parents in the group M + A3 , M' + I
3
are in no way selected by

* It might be difficult to get a mathematical measure of the intensity of a disease. For simple

theory as apart from statistical measurements, such is, however, unnecessary. The terms used in

medical works, acute, subacute, chronic, &c, sufficiently indicate that the relative intensity of various

cases is a fact duly recognized by the trained medical mind, if it cannot always be quantitatively

expressed.
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parentage, or influenced by heredity, being general statistics, we shall assume that,

on the average, A 3
= k — I

2 , and hence :

Ai = —— ~
j- (li — 7il ) = « /c + ..

,9 f 7(li — rjU)*
1

I — 7f — K? a K l l ~ ;
[

1 — rf — K 3
J (J

v x
'

" }

Similarly :

1 "
1

'{
' ] e1 — tc1

I cr
^ ~ e 27'

These formulae give the chief influence of age of appearance and intensity of

disease in parent upon intensity and age of appearance in the offspring. If we

suppose k positive, i.e., if increased age of appearance means for the diseased,

population as a whole increased intensity, then intensity of disease in parents tends

to lower the age at which the disease appears in the offspring, and this tendency to

antedate is the greater, the greater the correlation (yj) between intensity of the

disease in parent and child, i.e., the stronger the hereditability of the disease. If k

be negative, i.e., increased age of appearance means for the diseased population as a

whole decreased intensity, then the opposite result will follow, for .A.
x
will have a less

negative value than if rj = 0, i.e., the age of offspring be raised towards the mean.#

It would thus seem possible that the antedating of inheritance in the case of gout

and diabetes might correspond to a post-dating in the cases of diseases intenser in

youth ful hidden ce.

Our second formula shows that for diseases with increased intensity at increased

age of appearance, a late age of appearance in the parent decreases the intensity of

appearance in the offspring, while the reverse holds if the disease is intenser for

youthful than for senile incidence.

It must be noted that the correlation between intensity and age without regard to

heredity is given by :

K ~
1?

a

so that heredity affects the constant of correlation k by multiplying it by the

quantity :

e (rj -J- e)
1 +

1 - ^ -€" —- ic*

The second part of this expression is by no means necessarily negligible as

compared with the first part, if heredity be strong. For example, with the order of

correlation we have found between parent and offspring, in the case of stature the

* Generally but not absolutely, for if + k° for some diseases may be > 1, and, if not very different,

then the second term is the Important term,
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second term might be
-J

to ^ while, for values of the order '1 in the correlation

coefficients, it would be a much more important term than the first, i.e., heredity

would completely obscure the general correlation between intensity and age.

Similar remarks apply, of course, to the formula

and the modification of its k by the factor

1 _L
ri(r} + e)

1 — 7]
3 — x?

While the above discussion has been adapted particularly to the problem of morbid

inheritance, it should be noted that the general formulas for triple correlation apply

to a number of interesting problems on the inheritance of two faculties by the

offspring from the parent. In particular, the above special formulae in tj, e, and k

apply without modification to any case when (a) the two faculties are correlated in

like manner (/c) in parent and offspring, (6) the two faculties are each directly

inherited (77 and e), (c) there is an insensible or zero amount of cross heredity. I do

not stay to develop the formulae at present, because I hope to return to them when

I have more ample statistics to illustrate the properties of cross heredity from.

(d.) On the Skeivness of Disease Curves.—There is one qualifying remark which

must, however, be made before we leave the topic of morbid inheritance. We have

assumed that the frequency surface for intensity and. age of appearance of disease is a

normal correlation surface. This, however, is only an approximation. If we add

together all the intensities for each age, we shall have a frequency with age curve for

the disease, and if the correlation surface were a true normal surface, this would be a

true normal curve. In many diseases, possibly in all, it is however, a distinctly skew

curve, and this whether we take the case-frequency or the mortality-frequency. This

has been illustrated in " Contributions to Mathematical Theory of Evolution, II."

('Phil. Trans./ vol. 186, A.), Plate 12, for enteric fever.# The following statistics

illustrate the same skewness for a disease more distinctly associated with heredityt :—

Phthisis : 2000 cases with History of Parental Phthisis.

1 Age . . 1

26

10

100

15

436

20

549 392

30 00 40

1 j

45 ! 50 1 55
; i

1 s

I

1

1

60

i

Frequency 217 149 65
! i

27
j

6 1 9

! I

"

|

4

* It is, I think, true for all fevers, some of which, however, have k positive and others k negative,

f R, E, Thomson, 'Family Phthisis,' p, 22, London, 1884.

MDCCCXCVI.—A, 2 Q
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It is clear that we have here to deal with a skew curve of the kind discussed in my
second memoir, and the intensity-age distribution must be a skew correlation surface

to give rise to such a curve. The full treatment, accordingly, of morbid inheritance

requires a discussion of skew correlation, I hope to be able to return to it again

when dealing with the general theory of disease distributions. Meanwhile^ the

considerations of this section are based on an approximate theory, which, however,

can hardly fail to give the main outlines of the subject, if a more accurate develop-

ment might be requisite when actual statistics were forthcoming to be dealt with.

(10.) Natural Selection and Panmixia.

(a.) Fundamental Theorem in Selection.—The general theory of correlation shows

us that taking p + 1 correlated organs, if we select p of them of definite dimensions,

the remaining organ will follow a normal law of distribution, of which the standard-

deviation and mean can be determined. Now, in the problem of natural selection,

we do not select absolutely definite dimensions, and the p organs selected may be

specially correlated together in selection, in a manner totally different from their

" natural " correlation or correlation of birth. We, therefore, require a generalised

investigation of the following kind : Given p + 1 normally correlated organs, p out

of these organs are selected in the following manner : each organ is selected normally

round a given mean, and the p selected organs, pair and pair, are correlated in any

arbitrary manner. What wr
ill be the nature of the distribution of the remaining

(p + 1
)

fch organ ?

Geometrically in j>dimensional space we have a correlation surface of the p
th

order among the p organs, and out of this, with any origin we 'please, we cut an

arbitrary correlation surface of the p
ih order—of course, of smaller dimensions—the

problem is to find the distribution of the (p + l)th organ related to this arbitrary

surface cut out of what we may term the natural surface.

If the p organs are organs of ancestry—as many as we please—and the (p + 1
)

th

organ that of a descendant, we have here the general problem of natural selection

modified by inheritance,

We will distinguish the two correlation surfaces as the unselected and the selected.

Let /3l5 /32 , /33 , . . . be the regression coefficients of the (p + l)
th organ on the p organs

for unselected correlation, then for values of the p organs h
l9

h.29 A
3 , . . . from their

respective means, the (p + l)
th organ will have a distribution centering round

fi [
h

l + /32
h,

2 + /33/^3 + • • • 5
a^d a standard deviation <x given by the general theory of

correlation (i.e., the S.D. of the array). Similarly, for values h
Y + x

l9
h2 -f- x29

hf-\- x
3 . . . of the p organs, the (p + l)

fch

will have a distribution with standard-

deviation <x and centre

& (
h

i + x
i) + & (h + xz) + & (

Jh + xs) + • • • = £ + S (£r*a)> say-
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Thus a deviation, of the jp
th organ lying between v and v + dv from the mean of

these organs will occur with a frequency varying as

CIV 6 2 a2 *

Now let the selected correlation surface centering round h
i9

A
2 , h

s , . . . be given by

z zzz constant X c
~~%(aiixi

2 + a^/ + •
•

. + ^h%xix2 + ,,..)

Then the total frequency of the p
th organ lying between v and v + dv =

Constant X eft; iff . .. e
-J-^-^> -if 8^^ 28^^}^^^ . . .

00 — W 00 — W 00

To carry out the integrations, let us first transfer the expression in the exponential

power to its " centre," writing v ~~ £ == w, and x{, x^ 9
x

3\ ... as the coordinates of

the centre.

To find the iQ centre " we have the equations :

A (
u - S (P\xi))/<r* = anx i + anxi + %s< + • • • ,

A (w - S (&0)/crs =3 <%< + a
22^/ + a23x3

' + . . .
,

& (w - S (ftOJ/cr
2 = a31

^' + cr
82aa

' + a33^ + . . .
,

• • . «

hence

A*/ = (&AU + Mb + &A 13 + • • .)(« ~ S (AO)M
A< = (&AS1 + /32A22 + /33A23 + . . .)(« - S (AOVa*
A«3

' = (&A31 + /32A33 + /33A33
+'.

. .)(« - S (to'))M
B # • •

where A is the determinant of the as, and the A's are its minors, clearly a$ = aj{
and A# = A#. Multiplying these equations by fiu /32 ,

yS
3 . . . respectively, and

adding we find

cr^AS (&<) = {/VAn + #AM + /VA33 + . . .

+ 2A12&& + 2A
13&& + . . .} (

M - s (A^'i))

= (S(ABAU ) + 2S(A 1S &&)}(« - S (iS^'O),

hence

where
'

X = S (A
3A„) + 2S (Au ftA).

2 Q 2
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We can now transfer the exponential expression to its centre and we find for the

frequency

CO CO CO

Constant X due 2W" ° 2A+x/
. . . e <- \ \ a*// \

~v °* }

n

dx.dxAx*.

X — CO — CO

Where #
l3

;r
2?

#
3

. . . , now denote the coordinates transferred to the new origin.

The integrations can then be performed without changing the u factor, and finally

the frequency

= constant X da e
-W<" +

*).

Hence we notice the following important results :

(a.) The_p + 1
th organ follows -a normal distribution,

(b.) Its standard deviation 2 is given by

(c.) Its mean (since ^£ = v — ^) = /3
3
7t

2 + (SJi.z + /33 /i3 + . . .

We conclude that

(i.) so long as selection is normal, however complex may be the system of organs

selected, and however complex their correlation, the distribution of any single organ,

remains normal. This possibly accounts for the persistency with which normal

grouping reappears in nature.

(ii.) If we select organs varying about any means whatever, the mean of the

correlated organ resulting from this selection will be identical with the mean we

should have obtained by selecting organs actually at the means of selection.

(hi.) The standard deviation of the organ which results from the selection is not

that of an array (cr) arising from selection of the organs actually at the means,, but is

(as we might expect) greater. This greater variability is due to the expression

.

2^l+^ + ... + 2/31/
8
3

A
f +

which admits of the following interpretation.

Consider the selection correlation surface

z constant X e'Ha^ + n^ +
' • + 2<w* + •

•>

and give x
1
and x

2
chosen values tj

1
and 773.

Transfer the remaining variables to the " centre." The equations to do this are
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f+ViOu + Vian = Vian + Vzai* + avs
x
3 + «w.< + • •

= i
?1
a31 -f 772a32 + a33x3

' + a31,< + . . .

= ^ x
a

41 + Vma4i + ai3a?s
' + %X + • • •

» »

where /and g are written for «
13
^

/

3 + ci^x^ + • • aD d a23^3 + a2^^ + • • • respec-

tively. Solving, we find

XlollOo

An (/+ Vian + %%s) + Kz (9 + Viam + V2aw) — Vi A >

A
21 (/+ ^11 + V*al*) + A22 (9 + ^12 + %<%) = % A -

/ ~~ A A A 2
^ 71^11 72^12*

_ . A _ ^^ _ ^^

But the exponential expression with its origin changed is given by

z = constant X e~^^auVl2 + 2ai2VlV2 + a22Vz2+^ 1 + g^

\/ p~\ («33^3
2 + «4i%

2 + . . . + 2a3^3«4 + . . .)

Integrating between the limits ± oo for all the variables x
3 , x^ x

B . . ., we shall

have the correlation surface for rjD rj
2>

or substituting for/and g

_ 1
A pi2

, ^ 9
A13 }

z' = constant X 6 * i - (a^/Au

a

m) 1 au + a23
- *m* aha32 >

g

Comparing this with the formula on p. 264, we see that if p12 be the correlation

coefficient of x
x , x2 and s

i9
s
2
their standard deviations

pia
2 = A13

2/AUA22 s
x

2 = Au/A s
2

2 = A2,/A or p13<v2 = Aia/A . . (c).

Thus we conclude that the standard deviation for the organ resulting from the

selection is given by

S» = cr
2 + &V + /W + • • • + 2A^i£«]*2 + • •

•

Here cr, ft, & . . . refer to the natural or unselected correlation surface, and

s
i9 %> • • • Pn ' • - ^° âe sele°tion correlation surface.

(&..) Edgeworth's Theorem.—We may stay for a moment over the results (e) above

in order to deduce Professor Edgewokth's Theorem,* which we shall shortly require

to use, By the theory of minors (Salmon's 'Higher Algebra/ 1866, p. 24) we have

* Briefly stated with some rather disturbing printer's errors in the ' Phil. Mag., 1

vol. 34, p. 201, 1892.
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AP JLJL 1 1 * •^12?
A^13 • * *

A xl 00* A 23 . . •

•^•31? XXQD, JLJLOO o « «

A|3 p XfQ & Q Z
' U] Og Ui\ » 1> Pl2? Pl3 • * *

P21? 1? P23 • e *

P3l5 P32J L
. . . .

Hence 1/A = s^s^s^ . . . R, where R is the determinant formed by the correlation

coefficients with a diagonal of units.

Further, if Bll3
B23 . . . B12 ... be the minors of the A-determinant, and Ru?

R22 , . . . R12 , ... of the R~determinant, we have (Salmon, loc. cit.) :

«n = Bn/A^ = ARlA»«
9V • • • M3 - Ru/(R»i8

),

a'22 = 1322/A^
l = AK22 «§

1
5
2
S
s

. . . /%" = L,22 /(K52 ),

3
= lij^/^K^o).a12 "^12/ ""**"" aAjIvio^i "2"^ • ° * / '-M

Thus, the correlation surface may be written

z
fin

(27r)^sr%% . . . \/R
6 211

(k
1A* + B28^ + .... + 2RW3&+ ...)

where n is the total number of sets of p organs and /x is a numerical factor denoting

the number of (p + l)
th organs corresponding to each set—in inheritance what may

be termed a factor of reproductivity#—which is assumed to be practically constant,

if not over the whole unselected correlation surface, at least over the selected

portion of it.

(c.) Selection of Parentages. Correlation Coefficients for Ancestry.—The results on

p. 300 and p. 301 for the regression £ and the standard-deviation £ whenp correlated

organs are arbitrarily selected about p means will, I think, be foifnd to express the

chief features of natural selection. A few special corollaries may follow here.

Cor. 1.—If a single parentage be selected with mean hx above the mean of the

general population and standard deviation s
i9

then ^ = (7,

r
01

CTi

where rQ1 is the

* The variation of this factor is, however, the essential feature of reproductive selection, as I shall

allow on another occasion.
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correlation coefficient of parent and offspring, and a\ }
cr their standard-deviations in

the unselected state. Thus we have

f - r
01
^L

hl ? 2» = ^ (1
_

roi») + ro
2 3l

s

^
^1 °i

If the parent and offspring are of the same sex and there be no reproductive

selection, cr = <r
3 , and we have

f = r
01&, 23 = cr

3
(1 - r

01
s
) + r01V-

Cor. 2.—If a bi-parentage be selected with parental means h
l9

h
% , standard-

deviations s
x , %, and coefficient of assortative mating pn> then

£ r
Q1
— ^12^Q2 Op . r 3

—
?*i2

r
01 ^0 7

2* = cr
3
(1 - r01* - r,i - r

ls
* + 2r0lVl2) + &V + &V + 2A/Wi%-

Let us use these results to investigate how the offspring of a selected parentage or

bi-parentage degenerate. At first sight, it would appear that with our general

proposition the discussion of the effect of p selections would be perfectly straight-

forward. So it is, but the conclusion which follows, although it might have been

foreseen, is remarkable in its consequences. We have only to calculate out the /?s

for p selected ancestors, and we obtain the regression £ in the descendant by putting

in the values hv h
% , h

B9
. . . of the means of the selected ancestors. For example,

suppose now a parent, a grandparent, and a great-grandparent to have been selected.

We can find the f¥s at once from the results on p. 294. If 1, 2, 3, 4 denote the suc-

cessive generations, and r the correlation coefficient of parent and offspring, we find

,v» ___ m m q<3 fy* . iy& q* —^ q* q« ^r ?
w 4» ZZZ V

whence we deduce at once

or

\ — 1 - 21* + t\ v
i2i
= r (1 - 2r* + r%

Similarly, if we take offspring (1), parent (2), and maternal and paternal of the

same sex, grandparents (3 and 4), we have :

.-},,, « fy* ,-v* —— /y%% fy% —— A'»2 /V» —— rtl /V» —— 4* 4* ,
—

—

O
7 13
_ r, ? 13

— ? , r u — / , A
23
— / , I u — /, /

34,
— v,
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whence

= 1 — 2r3, vn — r (1 — 2r% yis = v
14
= 0, 1/x = 1 - 3r* + 2r*Ai

or,

a
CT-,

'?"
, p.) —- /3o -—^ U ? 2<t -

—

- (T\ \/ X r3
.

• Thus we see that in both cases the grandparents are quite indifferent, when the

immediate parent has been selected.

These theorems can be at once generalised by means of Edgeworth's theorem.

Suppose we select a complete parentage for p generations in the case of partheno-

genetic reproduction, or a parentage of one sex, say males, in the case of sexual

reproduction, then in either case our scheme of subscripts of the correlation-coefficients,

—>- marking a generation, is

-5>-

and
2 —^ 8 —> 4

r

5 ~s~ V

, ) .t'J

1

/y

r

1

r ,J

. . . 7

. r

*p-i

?>•

/
-

r,p-i
I

i?J-«S
1

Multiply the second line by r, and subtract from the first, and we have

J% HZ I X """"" ? ""
) 1.1/ 1 1 8

Take R
1(? (5 < p), and we have

_K
lf

y^»

/VS."*

/ * *> a I

»2~ 3 ,V2-^
6 * # /

,2?-2

r 1

« »

r»J->- I .i>
~9

Multiply the second column by 7% and subtract from the first, and we have

Ulq = if £ > 2.

If g = 2, we have
J. In g.

ry*

r iQ

,yt

1

A1& flAp~ &
» » 9 # /

/J/*
/y#—

*

/V»i

/V».2>
-1 ,^~3

* * S

or, dividing the first column by r, Rla
= rR
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Hence £ = r — ho, and or
2 = cr

{

2
(1 — r2

),

or precisely the results we should have obtained by selecting only the immediate

parent.

To simplify the analysis for biparental selection, assume that the correlation

coefficients of both parents are equal, and that there is no assortative mating.

We have the scheme for the correlation-coefficients subscripts, —> marking a

generation :

1

-2—

4

5-
—j-

—

>

3-

•G

8—
9—

lu-

ll—

12—

13—

14—

15—

and so on.

Thus rmn is at once expressible as zero, or a power of r, the simple coefficient of

correlation for parent and offspring, according as m and n do not or do lie in the

direct descent.

Hence we find

R = 1 r r q
7
a o

,,.3 rpO q*&
'I

,,3 A'»0
. Q
r6

. . .

r 1 r V
q

. . .

r 1 r r
q q q v . . .

/y*& r 1 r T . . .

q V 1 r r . . .

ru*l r 1 r r . .

q r 1 r r . .

/r»'-»
q r 1 . .

/yvJ ,;.2 ry 1 . . .

ri r 1 . .

,.3 r2 r 1 . .

,.3 /v»3 r 1 . .

1

r 1 . .

1

!
r6 r 1 . .

,.3

1

i

r3 r 1 ..

Add the second and third rows, multiply them by r and subtract from the first,

and we find :

R= (l-2rs)En .

M'DCCCXCVI.—A. 2 R
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If q > 3 and < p we have

Ri, 7* 1 r v
9 nn.Z

9
/J-

» ^
. . .

/ 1 r r A1« ntZ 9
r2

. . .

o

r 1 r r . . .

9
r .0 t r 7'

. . .

/1.->.V r I r r . . .

9
r 1 r r . . .

/I'O /1-»<J r 1 . . .

z^O 9
r 1 . . .

« « 9 $ 9 • • • • •

Whence, adding the second and third columns, multiplying by r and subtracting from

the first, we have Il
1?
= 0.

Lastly, R12
= ?\RU and R

13
= ?\Rn ; for R

12
is of the form of R

lq above without the

second column. Divide the first column by r, and subtract the second column (the

third of R
lr/
above) and it becomes the first of. R 11? the remainder is identical in R 13

and Iin . Hence, R
13
= r~R]V Similarly we find R 13

, Thus we conclude that

i v - h
9i + r -*- h R ,

(T
'2

o\, (To

cr
}

2
(1

9
?*).

the formulae for biparental inheritance with equal parental correlation, and no assorta-

tive mating. The analysis for unequal parental correlation and assortative mating

follows the same lines, is far more lengthy, but leads to the same result, i.e., no gain

by selection of the same amount, oft repeated.

(d.) Secular Natural Selection and Steady Selection. Focus of Regression.—We
thus see that, on the theory with which we are concerned, a knowledge of the ancestry

beyond the parents in no way alters our judgment as to the size of organ or degree of

characteristic probable in the offspring, nor its variability.# An exceptional father

is as likely to have exceptional children if he comes of a mediocre stock as if he comes

of an exceptional stock. The value of £ will be no greater nor the value of %x
less if

the parents have been selected for p generations than if they have been selected for

one only. This result seems to me somewhat surprising, but I cannot see how it is

to be escaped so long as we assume the normal distribution of frequency, which

appears in so many cases to be a close approximation to fact. It is of course possible

* This seems specially noteworthy ; it would seem natural to suppose that the offspring of a long

selected stock would be less variable than those of one just started—that the offspring of a gradually

created variety would be more stable than those so to speak of a sport. It appears not.
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that in some manner repeated selection causes a progression of the " focus of regres-

sion," by which term I would understand the mean of the general population from

which selection has originally taken place. I have been very careful so fir not to

hazard any statement with regard to this focus of regression. I have measured only

the amount by which the offspring of exceptional parents diverge, not from the mean

of the parental population but from the mean of the offspring population. In this

manner our formulae allowed for the play of secular natural selection. It is quite true

that the word " regression " thus loses its accustomary meaning, which it can only

bear if the population be stable and the means of two generations sensibly identical

;

this is the case for which, I think, the word was introduced by Mr. Galton,# The

sense given to it in the present paper is accordingly a technical one ; as already

defined, it is the ratio of the mean deviation of the offspring of a selected parentage

to the deviation in the parent which characterises the selection, the deviations in

offspring and parents being respectively measured from the means of the corre-

sponding general populations. Now here, at the very outset of our consideration of

panmixia arises a very real difficulty, which is vital for the whole theory of evolution

by natural selection. According to Mr. Galton the population being stable, or no

secular natural selection or reproductive selection taking place, there is a regression

of the offspring of selected parents towards the mean of a certain general population,

and the " grandchildren " also regress to the same mean. We shall see then that

unless correlation is perfect ( r — = 1 ) no amount of continued selection would suffice

to prevent a race from regressing to an original general population when that selection

was suspended. Panmixia in the sense of its most ardent supporters would be demon-

strated. But the difficulty is not the establishment of panmixia, but as to what is to be

considered the " original general population." On the theory of evolution by natural

selection that general population has itself been produced by a series of selections, and

selections probably affecting its mean as well as its standard-deviation, hence how is it

possible to pick out any particular stage of general population as the " focus of regres-

sion," and assert that regression of the offspring of parents now selected takes place

towards that stage of evolution ? Where is the focus of regression to be placed for the

profile angle of man ? About 80° to 90° or nearer the 40° to 70° of the anthropoid apes?

The further back the better for those who believe that suspension and reversal of natural

selection are identical, but no manipulating whatever of the human mortality tables

would allow for a " focus of regression " very considerably below that of the current

general population. Hence it would seem essential that successive selections must

connote some progression of the focus of regression. This progression may be con-

tinuous with continuous natural selection, or it may take place by starts and leaps, as

* We can at once restore the true notion of regression, as Mr. Galton points out to me, by measuring

each organ or characteristic in terms of its own standard- deviation. It will then be a coefficient of

correlation and a proper fraction.

2 r 2
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indicated in Mr. Galton's idea of organic stability. In either case panmixia would

only carry back the mean to the current focus of regression, and so be a very minute

reversal of natural selection.

What our theory really shows is a regression of the offspring of selected parents

towards the mean of general offspring. This latter mean, supposing no secular

natural selection, can, it seems to me, only be determined by experiment. It can

hardly agree with the general parental mean, if the parents themselves are the

product of natural selection. On the other hand, the statistics actually obtained for

stable, or sensibly stable, populations seem to mark a focus of regression close to the

mean of the current population, and, therefore, a progression of the focus due to past

selection/" Meanwhile, till experiment has settled how continuous selection affects

the focus of regression, we may see whither extreme hypotheses lead us. Such are :

(1.) The focus of regression remains stable during selection,

(2.) The focus of regression is the mean of the population from which parents have

been selected.

(e t ) Focus of Regression Stable during Selection.

(i.) Steady Selection cannot be Secular or Produce Truer Breeding.—We have

seen that on this hypothesis ancestry, as distinct from immediate parentage, is indif-

ferent. Thus, in the case of parthenogenetic reproduction, or of sexual reproduction

with one parent selected, we have seen that one selection leads to the distribution

(Cor. 1, p. 301) :

£ = r01
— \ b S2 = a* (1 - r

01
s
) + r

01
2— s

1 9

and if out of this we again select a parentage, defined by A
2
and s

l9
we shall obtain

the same distribution of offspring, and this however often the process be repeated.

We must increase the divergence (A
3 )

of the selected from the general population or

its concentration (1/sj) or both, if we require any progressive effect from continual

selection. The same remarks apply to bi-parental selection (rn
l}
m

3 , s
2 , s

3 , p12).

Persistent selection only suffices to keep the mean and variation at a definite distance

from those of the general population. Or, on the hypothesis of a stationary focus of

regression, we conclude that steady selection, however long it persists, can only be

periodic and not secular.

This point seems of such importance that it may be best to illustrate it by an

example drawn from our Table I. and Table III. The mean height of fathers being

about 69"% the regression of the average sons of fathers of 6' in height is about

1"*25, or the average height of sons of a 6
f

fatherhood = 70
//#
45, Hence, if we

select fathers forming a normal distribution of any standard round 6', we shall have a

normal distribution of sons round 70" #

4.5. If we select a second parentage, from

* The determination of the focus of regression for some organ in selected domestic ducks for several

generations and- comparison with the means for wild and general domestic ducks would seem a

possibility.
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those taller sons averaging 6', their sons will still only average 70
//#
45, and, however,

long we persist in this process of selection, we shall produce no secular change ; the

population will remain after the p
th selection just where it was both as to mean and

variation after the first. The only way to produce a secular change is to continually

increase the standard of the selected (or to alter the focus of regression). No steady

selection would appear to produce "truer breeding."

(ii.) Panmixia and Uni-parental Regression.—Continual selection of the same

magnitude for p generations, merely giving us the same mean and variation, we may
now ask what would be the effect of suspending natural selection for q generations.

Take first the case of parthenogenetic reproduction, or that of uni-parental regres-

sion. The first parentage after suspension of natural selection will have m
3
r
3
crjcr^

for its mean, and a/{°"i
S (l — r

3
2
) + 5

s
3 r

z
cr\la'%} f°r ^s standard-deviation.

Successive parentages can be found by substituting these values successively in

themselves for the quantities m% and s2 . We find at once that after q generations

of suspended selection the mean of the population will differ from the focus of

regression by

and the standard-deviation will be given by

V = «r
x
» (1 - r8»)

l^^P + K <rJ*aY<-* V-

Now if the population simply repeat itself without any natural selection (if there

be no reproductive selection at work) cr
x
= cr2i and in most cases I have come

across r
3 o-Jcr^ is a fraction. Hence, as q is indefinitely increased m.

2
(r

8 crjcr2)
9 becomes

indefinitely small, and %* = cr^, or = cr^ t ——y~"Ti> if a-
x
be not equal to ov.

We see, therefore, that both, as to mean and variation the population with

Suspended natural selection tends to rapidly regress to the general population from

which it was selected. This is still true if there has been a continuous secular,

as distinguished from a periodic natural selection, for we have only to suppose m
%

and s
2

to be the final result of such selection. If then the focus of regression

does not progress with continuous selection, all that has been asserted as to the

effect of suspended natural selection holds, at least so far as concerns a return to the

condition of things which prevailed when the focus of regression was the mean of the

general population. But unfortunately the advocates of panmixia want more than

this, namely, either an indefinite regression of the focus of regression itself, or to

place it, if steady, at an indefinitely distant point. The first result would be

perfectly parallel with our second hypothesis—a progression of the focus of regres-

sion,—but would demand rather a reversal than a suspension of natural selection.

The second result seems quite inconsistent with any statistics of successive genera-
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tions yet taken ; it demands a mortality due to natural selection, which its

propounders have hardly appreciated.

(iii.) Panmixia and Bi-parental Regression,—The process by which corresponding

results may be deduced for bi-parental selection may now be briefly indicated.

We suppose both natural .selection and assortative mating to have gone on in any

manner for any number of generations, the final effect, however, if the focus of

regression be not changed, will be :

Mean of males ~~ /V% ~^~ Aiws
==

'i
u']j saJ

r
*

Mean of females = fa2
m

-z + /3V% = p\> saJ>

(S.D. of males)3 = o-
2 + /J

2%2 + /V^s
2 + 2fafas2

s
sp = e/,

(S.D. of females)2 =r a*
/2 + /3'

3
ss/ + i8'3

2
5
3
2 + 2/3

,

3
/3'

3
%s'

3p = ^ t

2
,

where m3 , m3> % s3 , p defines the last step of the natural and sexual selections, and

fa^ /J'3 are the regression-coefficients for females.

Now, selection of all sorts ceasing, we must use for the regression-coefficients no

longer their values modified by sexual selection,, but simply ;

fa = r
3
crj(r

2 , fa = r% a-Ja-^

/3'
2
— r\ cr\/<r'2i

/3'
3
= v\ crVor'g,

a — ^1 \ l ' ' 2 '3/ or — or
2 ^ 1 / 2 / 3 ;,

obtained from the general values, p. 287, by putting ?\ = 0. Here r'2 and r'
3
are

respectively the maternal and paternal correlation coefficients for inheritance in the

female line. Further, we have very closely cr
l
= v%

= cr's and cr^ = cr'g = cr
3

. If

^, /jtp give the male and female means, epi tjp the male and female standard-deviations,

after p generations in which natural and sexual selection have both been suspended*

we have

:

ftp
==

P^ftp-^i i Psft 2i~l>

ft p
== P 2^-1 + P §ft p~l>

e/ = a» + &Vis +&VA

Solving the equations for the means first, wre have :

ftp
= Ajy

^ + A
2y 2>

ft ^ —. ilj yx -T" ^.3 ^ 72 ?

where
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and

7i

72 J

A

XAJ)

7i ™ 73

/A + Ml (#3 - 7i)

JL
2

7i - 7s

- ?

{/88 + /8'»±V08a
-j8'

8 )» + 4ftj8'9 }.

Since the /S'b for parental inheritance "will be < *5, it follows that y x
and y3 are

proper fractions, hence by taking p sufficiently large, we can make [x
J}
and [i p as small

as we please.

This result is equally true whether the /3's be those for assortative mating or not.

Thus we conclude that suspended natural selection, whether accompanied by sexual

selection or not, would ultimately result in a regression of means to the foci of

regression of the two sexes.

(iv.) Panmixia for Human Stature,—It is worth while illustrating this by an

example. Let us suppose that owing to natural selection, the mean of the male

human population were pushed up to 4" above its present level, and the mean of the

female population were pushed up 3" above its present level, and then let us inquire

how they would regress in p generations of suspended natural selection with and

without that factor of sexual selection we have termed assortative mating.

(a.) Without Assortative Mating.-—We must take the values of the /3
J

s from

Table III, :

& = '4456, & = '3384, 0'3
= '3096, j3'

3
= '2932.

fc urtner

We find

/
x

i
A", Pi

It
3".

whence

jX p

7l = -7069,

Aj = 3-9549,

3-9549 (-7067)^'

3-0538 (-7067)?'

y3
= -0419,

+ -0451 (-0419)''

- '0538 (-0419)p-i

Thus, in four generations (p == 5) the males will, have sunk to •9876" and the

females to '7626'' from the old means* before natural selection started, while in

nine generations (p = 10), the mean of the males will have sunk to '2036", and the

mean of the females to '1816" from the old means; thus the means of the general

populations of both sexes have been sensibly carried back by panmixia to the focus

of regression.

# The smallness of tlie contributions given by the second terms In tbe values of /tp, fi p is to be noted.
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whence
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(b.) With Assortative Mating.—We must take the values of the /?'s from

Table XIII. :

£2
= -4176

5 3
= '2997

?
B'

2
= *2895

3
B'

3
= -2609,

yx
= *6440 y% = '0344,

A
1
= 3'9893 A3

^= '0107,

lip = 3'9893 (-6440)'- 1 + *0107 (-0344)*- 1
,

fi''p = 3-0136 ('6440)^- 1 — '0136 (•0344)^" 1
.

As before, we note the small importance of the second terms. After four genera-

tions (p = 5), we have \ip = '6862 and \x!
v
= *5184

; while after nine generations we

have fip = *1 L80 and /jl'p = '0892.

Now the effect of assortative mating here, even so little of it as may be detected

in regard to stature in human mating, is of the exactly opposite character to what

some of the current language on panmixia would have led us to believe. The more

assortative mating the more rapid is the regression. The maximum of regression

would be reached, if this factor of sexual selection exhibited perfect correlation.*

Hence, assortative mating, if unaccompanied by a stringent natural selection, appears

rather to emphasize than retard the action of panmixia.

(v.) Effect of Panmixia on Variation.-—We now turn to the second part of our

pioblem, the determination of the standard deviations after p generations of

suspended natural selection and assortative mating. This involves the solution of

the equations ep and rjp on p. 310.

We find

w -—-
£^ _J_

(^ __ __ _|_ (^ __ _ _.. ,

9\ ~ 1 ffz- 1

7) P — 71 I M /Q 2 ,-, 1 ' ^ /o 2

p-1 - 1

where
A* fc-l ' * /3s

3 fc-1

£} = i {&* + &'* ± vW- &*)• +^4ftW\

I

and Cj: and C3
are to be found from

* This is not absolutely accurate, for r
3
and r

3
are not equal, So that all the /3's do not take their

smallest value for r± = 1. But assuming' r
2 and r3 , r'

3
and /3

nob very sensibly different, the result

stated would practically follow. The whole reasoning in the text is, indeed, subject to another

limitation, it is supposed that the constants of parental inheritance and of assortative mating are

independent and characteristic of the race. The former, however, may really depend upon the latter.

The dependence is very improbably so close as to reverse the principle stated.
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C, + C2 = cr
3 + (& - 1) e* + &V,

e/ and t;^
2 can then be found at once, if the values of the constants are known.

Remembering that gl
and g2 will be proper fractions, we can easily find the effect

of continued panmixia by putting^ = 00.

We have

2± a, ft + c2 - Cm - gggi _ --3 (i - A") + *W
€
°°

x "*" M8 - (ft + r/3) + 1 W -W - A8 - &'3 + 1

'

after some rather lengthy reductions. Similarly

2 _ <w + «* a - a3
)

7700
'W3

3 - |8sW - &» - ',» + 1
*

If we substitute in these the values of the /3's, and of or and or given on £>. 310, we

find :

Thus we see that indefinitely prolonged panmixia carries back not only the means

of both sexes, but their distributions about the means to the state of affairs when the

foci of regression were themselves the means of the population.#

The all-important question concerning panmixia is, as we have seen, that of the

position and stability of the focus of regression, and it seems to me that this is a

question which it is only possible to settle by experiments. Nor do the experiments,

at least from the theoretical standpoint, seem attended by difficulties which are

insuperable. It is not necessary to select a parthenogenetically reproductive race, it

is not necessary even to select both parents, it would be sufficient to deal with the

regression from one selected parent, if this were most convenient,f The simple test

is this:—If M
x
be the mean of selected parents, m

l
the mean of their offspring,

and M2 be the mean of another group of selected parents (e.g., selected out of the

* In order to ascertain whether the standard deviations would return to their old values, supposing

natural selection to be suspended, but assorfcative mating maintained, we should have to solve a series of

equations of the type :

>// = *'* + #jV + 0'
8V12 + WtftfMBp-tfp-i,

and then substitute the.values of <rv a{ and the /3's from p. 286 in ew and ^ . I have not yet solved these

equations. In turning the above formulae into numbers, the caution given in the footnote, p. 312, must
be borne in mind, i.e., the correlation coefficients for inheritance during assortative mating may differ

somewhat from those holding when it is suspended.

t Perhaps a common father and series of selected mothers would give the best results.

MDCCCXCVI.—A. 2 S
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group m
l
by any series of selections and breedings) and m2

their offspring-mean, is

(M^ni
1
— M

1
m3)/(M2

— m%
— M

x + m
x ) constant for all stages of selection ? If it be,

it is the stable focus of regression, and 1 — rr—-rf- is the coefficient of regression.

(£) Progression of the Focus of Regression with Natural Selection.

(i.) General Remarks on Regression and Fixedness of Character.—Our first

hypothesis certainly favours the general views of those who support the doctrine of

panmixia,, although to be quite consistent they must :

(i.) Place the focus of regression back at the zero size of an organ or the zero

degree of intensity of a characteristic.

(ii.) Assume much nearer approximation to unity in their coefficients of regression

than any measurement as yet suggests, or

(iii.) Demand a far higher mortality of periodic natural selection than has

anywhere as yet been demonstrated.

Professor Weismann has no difficulty, apparently, about (i.) :
" As soon as natural

selection ceases to operate upon any character, structural or functional, it begins to

disappear!' (''Essays on Heredity," 1889, p. 90.) He talks of functionless organs

losing in size with the suspension of natural selection " until the last remnant finally

disappears" (ibid., p. 292), while "the disposition of the tail to become rudimentary,

in cats and dogs, may be explained in the simplest way, by the process which I have

formerly called panmixia/' i.e., suspension of natural selection (ibid., p. 430). This

explanation " in the simplest way" fails entirely to say whether (ii.) or (iii.) is to be

accepted after assuming the truth of (L). What is quite clear is that in the only

case where either the coefficients of regression or the mortality can at present be even

approximately stated neither (ii.) nor (iii.) hold. Fox-terriers and domestic ducks

may be bred with a comparatively small mortality, but how great must be the

coefficients of regression if their foci of regression are to be placed only as far back, say,

as at general populations of jackals and wild ducks/" Apart from cases of atavism,

which may be looked upon as improbable variations amply allowed for by theory, we do

note, even in dogs, a regression towards a distant ancestry (Darwin :
" Animals and

Plants under Domestication," vol. 1, pp. 37, et seq.). In these cases, however, change,

of environment seems in some way more important than the suspension of natural

selection. We have, so far, evidence in favour of Mr. Galton's view of positions of

stability for the focus of regression. It seems, indeed, to be a general opinion among

breeders that a character can be fixed, a stock made to breed truer by repeated

selection.

Thus Darwin writes on " Fixedness of Character :" " It is a general belief amongst

breeders, that the longer any character has been transmitted by a breed, the more

fully it will continue to be transmitted. I do not wish to dispute the truth of

* Professor Weismann would place the focus of regression for domestic ducks much further back,

presumably in a wingless stage. (" Essays on Heredity,'* p. 90.)
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the proposition that inheritance gains strength simply through long continuance,

but I doubt whether it can be proved. In one sense the proposition is little better

than a truism ; if any character has remained constant during many generations, it

will be likely to continue so, if the conditions of life remain the same. So again

in improving the breed, if care be taken for a length of time to exclude all inferior

individuals, the breed will obviously tend to become truer, as it will not have been

crossed during many generations by an inferior animal/' (" Animals and Plants

under Domestication/' vol. 2, p. 37.)

Down to the words " if the conditions of life remain the same," all is consistent

with the extreme theory of panmixia, but making a breed truer by selection for

many generations is only consistent with belief in a progression of the focus of

regression, or in a change towards unity in the coefficient of regression with continued

selection. The latter alternative would, I think, be quite inconsistent with our whole

theory of heredity as applied to a practically stable population, As we cannot

mathematically deal with a theory of progression of the focus of regression without

some hypothesis of the nature of progression with continued selection, we will

assume an extreme case, and suppose the focus to progress very rapidly, i.e., that

offspring regress to the mean of the population from, which their parents have been

immediately selected. This will at least offer some explanation of animals breeding

truer with persistent selection, if at the same time it leads to results inconsistent

with the extreme theory of panmixia.

(ii.) Panmixia and Bi-parental Selection.—-Let h
l9

s± be the paternal, ,h2i s2 the

maternal distribution at each selection. Then with assortative mating after p genera-

tions, the standard-deviations of the male and female populations will be of the same

form as after one generation"and be given by the e
ly ^ of p. 310. Now this result is not

like the stable focus of regression out of accord, I think, with experience. It is note-

worthy how comparatively little difference there is in the variation constants of the

different races of man, although in many cases pretty severe selection may have been

supposed to have been in progress for many generations. For example, the mean

cephalic index varies from 70 to 83, but the probable deviation from this mean only

varies from about 2 to 2'7, so that even very primitive races (where the variation is

small and we may suppose the selection has been severe, or the strain is very pure),

do not " breed much truer" than highly civilised races with a far less mortality.

The difference between the variation of the most and least variable races is probably

not more than the /J-terms in the values of e
l
and rj

1 (p. 310) may be able to account

for.

Turning now to the alteration of the male and female means in ^-generations of

selection, let as before /32 , /33 ,
/3'

2 ,
/3'

3 , be the regression coefficients and um vn9 the

distances from m
2 , m3 , of the means of the male and female populations out of which

the nth bi-parentage (m
3 , -m

3 , %, s3 , p) is selected.

Hence : u„ — (/3^i
fl + P%vn) and vn — (ft%nn + fi'fln) are the distances from m

% , ?w
3

ii S 4
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of the means of the male and female populations from -which the n + 1
th bi-parentage

is selected.

Thus we have the finite difference equations :

xxSSume *

JLJL. v- JLJ VyV-/ e

or.

or

W>n 4. x — Un
•*—

* \P<iUn ~p Pfftn)

vn + x
= v« — (/3>^ + /3'

3#)

«„ = Ax"" 1
, ^ = ^x*-

1
.

A(X - 1 + A) = - B&, B(X - I + #,) = - Ajff

(x - J
)

8 + (A, + pj (x - 1) + &#, - AA = 0,

Xl — 1 — y t
and X2 = 1 ~ T2>

where y x
and y2 have the same values as on p. 311. Thus :

u.»

vp

where

Juki —

—

7i - 7a

'

-l

A (ft z *yi) ^ ± ft^s

7i - 73

Now this solution* is the same as that on p. 311, except (L) that up and vp , unlike

fip and \x
P9

are measured from the selected means, Le.
9
the mean heights of the male

and female populations are respectively m
3
— up and <m

3
— ^ after p-generations

;

(ii.) that in the values up and vp (1 — yi)
p
~ l and (1 — y^" 1 replace y/"" 1 and y/"" 1

.

We conclude, accordingly, since yl9 y2 , and, therefore, 1 — yx
,

" 1 — y3 are proper

fractions, that up and vp grow smaller and smaller, or, if selection be long enough

continued, the means of the male and female populations will ultimately pass to the

selection means.

Of course, if selection be suspended at the n fch generation, regression will take place

as on p. 310, but only to the nearest focus of regression, i.e.
9
rn% —* u}n m3

— vn . Thus

the effect of n selections has been to raise the general means permanently by these

amounts,

* The uniparental or parthenogenitic results for progression of the focus follow at once by simply

putting /3S
= /3'% = ^'3 = in the above formulae
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(iii.) Panmixiafor Human Stature.—It is instructive to note the value of these

expressions for the case of stature in man. We have at once from the numbers on

p. 311, supposing p-selections of male and female populations averaging 4" and 3" above

the present mean, the following results :

(a.) Without Assortative Mating.

up = 3-9549 ('2933)*- 1 + '0451 ('9581)

Vp = 3-0538 (-2933)'- 1 - -0538. (/9581)

i

p — l

Thus, in five generations
(p = 5) u

5
— '0673 and v

5
= — -0227, or the male and

female means have been raised 3"'9327 and 3""0227 respectively. Thus, we see that

the males have been raised by selection very near to the selection average, while the

females have actually been raised beyond it.* Thus, continued selection would now

keep down, and not raise, the female mean, panmixia corresponding to a rise in the

mean.

(b.) With Assortative Mating.

up = 3-9893 ('3560)p- 1 + '0107 (-9656)'- 1

v/ = 3'0136 ('3560)p- 1 — '0136 (•9656)^" 1
.

Thus, in five generations, %i
h
= -0744 and v

6
= '0366, or the male and female means

have been raised 3"*9256 and2""9634 respectively. The means are accordingly raised

less rapidly with this form of sexual relation, the female mean, indeed, having in the

five generations not yet overshot the selection mean.

(iv.) Concluding Remarks on Regression and Fixedness of Character.—Accordingly

on this hypothesis, with the correlation coefficients of inheritance anything like their

value in man, five generations of selections of the type required in both parents would

suffice to establish a breed. This seems more or less consonant with breeders'

opinions, which, in part at any rate, may be presumed to represent their experience.

If, however, anything like this hypothesis be true, then the suspension of natural

selection would not be followed by a rapid regression, or even a slow persistent

regression, that would require a reversal of natural selection, i.e., a selection of those

previously destroyed and a destruction of those previously selected. On this hypo-

thesis, indeed, it would be probably best to keep the term panmixia for that

suspension of assortative mating which we have seen assists, rather than retards, the

processes of natural selection.

Several fairly sound reasons could be given why the focus of regression should be

taken as the mean of the population from which the parents have been selected, but

the sole safe argument appears to be experiment.

* This results, of course, from breeding from an average father very much taller relatively than the

average mother selected.
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The two hypotheses with which we have dealt give practically the two extremes
;

observation and experiment are perfectly able to determine between them, or to settle

whether an intermediate theory is necessary which will give a progression, but a

slower progression, to the focus of regression. There are many ways in which

analysis can put on the brake, if it be really needful.

At present, all this memoir proposes is to show that such subjects as inheritance,

regression, assortative mating and panmixia, are capable of perfectly direct quantita-

tive treatment, and that such treatment, and not somewhat vague discussion of

individual instances or of metaphysical possibilities, is what alone can settle the chief

problems of evolution. What is wanted is a wide extension of the experimental and

statistical work of Mr. Francis Galton and Professor Weldon. Such numbers as

appear in this memoir must be looked upon as illustrative and tentative only. T

hope later to publish, for a very limited field, namely, skull measurements in man,

a more complete numerical study with mathematical discussion of variation and

correlation.


